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The Science of Systems provides a unified approach to study 
all types of natural patterns and implores readers to embrace 
a worldview centered on connection and complexity. Complex 
systems challenge the view that nature can be understood as 
separate and predictable parts, which calls for new ways to 
model and interact with our interwoven world. 

This interdisciplinary work studies underlying principles in This interdisciplinary work studies underlying principles in 
logical systems and provides insights to phenomena observed 
in physical, informational, and biological systems. Patterns 
that are given particular attention include equilibrium, flux, 
symmetry, fractals, chaos, information, self-organization, and 
emergence. The book is adorned with hundreds of figures to 
vividly illustrate these patterns observed in nature. 

The book culminates in practical applications of how systems The book culminates in practical applications of how systems 
science can be used as a tool to address many contemporary 
challenges, spanning environmental to socioeconomic issues. 
As readers navigate the complex terrain of our 21st-century 
challenges, The Science of Systems empowers them with a 
systems thinking mindset, providing insights and methods to 
solve problems in our interconnected and complex world. 

David has an M.B.A. from Presidio Graduate School and a B.S. in Applied 
Physics from University of California, Santa Cruz. David’s career has been 
focused improving the environmental and social responsibility of financial 
systems. David has a passion for education and has created college-level 
courses on interdisciplinary sciences and sustainability. This book is the 
culmination of a 13-year journey to synthesize concepts of systems theory, 
natural sciences, and sustainability.
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Preface 
 

 
The central view of systems science—to think in terms of complex 
connections—offers the necessary perspective to reconcile modern 
scientific findings and address problems facing the 21st century world. 
The systems-based view challenges the idea, largely originating in 18th 
century Western science, that nature is made of disjointed components 
with collective properties that are simple to predict. Systems theory 
instead studies nature through a network of relations that can be highly 
interdependent, chaotic, and complex. This book conveys the essential 
insights of systems science in three parts. 
 

Part I – Foundations: First, an introduction is provided to 
system science, which studies all types of systems spanning formal 
logic as well as natural and social sciences. In its most general form, a 
system consists of a set of elements and relations. Systems are used to 
define simple to complex formal models, like logic and math, that can 
be used to study nature’s patterns across emergent levels. 
 

Part II – Theory: The next section provides a history of 
natural sciences and introduces common patterns in nature, including 
equilibrium, flux, symmetry, fractals, order, and information. 
Scientific discoveries related to chaos, complexity, and emergence are 
given particular attention as this highlights the necessity to transition 
from a parts-based view to systems-based view.  
 

Part III – Applications: Finally, we conclude with practical 
examples and methods for applying systems science to modern 
disciplines. Many of the environmental, social, and economical 
problems facing our world can only be addressed by thinking in terms 
of systems. Systems thinking provides an array of useful tools to create 
sustainable solutions and effectively intervene within our highly 
interdependent and complex world.  

 
Systems science supports a new worldview of connection and 

complexity. The goal of this book is to catalyze that shift of thinking 
in you and society at large. 
 

DAVID SHUGAR 
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Chapter 1 Systems 
 

 

 
 
 
 
 
 
 
 
 

 
 
 

 
Systems science presents a set of revolutionary ideas that prioritize 
viewing the world in terms of complex networks of relationships. 
Open and interconnected systems can generate chaotic patterns and 
emergent behaviors that are impossible to reduce to finite algorithms. 
Complex systems challenge the parts-based view that the whole can 
be efficiently predicted by the rules of the components. Instead of 
disjointed parts that sum in a linear fashion, systems science studies 
nature as a rich tapestry of nonlinear relationships. Systems science 
presents a new way to look at the world based on interdependence, 
complex patterns, and the connectivity between society and nature.     

Studying systems provides a unifying approach to understand 
relations between elements for any given scenario, be it logical, 
physical, biological, sociological, or beyond. Examples of systems are 
included in Figure 1-1, each with particular elements, relations, and 
domains of applicability. Systems science works to establish common 
frameworks by which any model is proposed, taking a meta-view to 
study how models themselves are established. Scientific methods can 
then be used to assess the relevance of a given abstract model in 
understanding patterns in nature, with the goal of using models with 
increased accuracy and comprehensiveness.  
   

!	System of
Logic 	#			 	!	System of

Geometry	# 				!	
System of
yAtomsy 	# 					!	

System of
yCellsy 	#     !	

System of
yHumansy	#    

Figure 1-1 Examples of Systems 

Example 1.1 

Example 1.2  
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A Systems View  
 

A motivational reason for a systems-based view is that the properties 
of the whole can be different than the sum of its parts. A parts-based 
view prioritizes isolated components where the property of the whole 
is a linear sum of its parts (e.g. total mass). However, in nonlinear 
systems with interrelated parts (e.g. trajectories of gravitation bodies), 
the whole can have emergent properties that are different than joining 
each part in isolation. The emergent effects of a whole can always, in 
principle, be constructed from joining the models of its parts, yet these 
emergent effects can be radically different. While linear models are 
typically easy to calculate, nonlinear models often generate chaos, 
complexity, and can be impossible to predict. A systems-based view 
studies nature through networks of simple to complex relations, rather 
than just considering disjointed, linear, and predictable pieces. 
 

 

                                                                                    

                                                     Parts-Based View                                                         Systems-Based View 

Figure 1-2 Parts-Based vs. Systems-Based View  

Even systems with a few interrelated parts can lead to chaotic 
and irreducible results that cannot be solved with a finite number of 
steps. For example, the trajectories of two objects attracted by gravity 
can be quickly calculated for all cases, but there exists no general 
solution for the three-body case.1 Most three-body trajectories, such 
as the one displayed in Figure 1-3, create chaotic orbits. Questions 
about the system, like if a given orbit will repeat, cannot be tested in 
a quick calculation prior to running a computer simulation that is 
subjected to timescale and resolution limits. 

 

 
 

Figure 1-3 Chaos of Three Bodies in Gravity 

Time 

Moving to a systems-based view  
 

 (e.g. interconnection, nonlinearity,  
chaos, complexity, emergence) 
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Systems theory is not just about considering the 
behavior of a given model, but studying the process for how 
any given model can be established. A formal model consists 
of symbolic elements that follow initial rules, called axioms, 
that can used to prove results, called theorems. Some models, 
like a pendulum, create simple results that can be easily 
predicted, while others, like a double pendulum, create 
chaotic results that cannot be accurately predicted for long 
time scales. Systems theory studies how models themselves 
are created in any given field of study, which models are 
simple versus complex, and the connections between lower-
level models to higher-level models of emergent behaviors.  

Systems can be characterized by numerous measures 
and states. One distinguishing factor is if a system’s boundary 
is closed or open to energy, matter, or information. Another 
example of a system state is thermodynamic entropy, which 
is a measure of disorder, energy dispersal, and the ability to 
do useful work. Yet another state is homeostasis, which 
occurs when a living system maintains a relative equilibrium 
between its interrelated biochemical reactions. Studying 
system measures and states, across different disciplines and 
emergent patterns, is foundational to systems science. 

A critical measure of a system is complexity, or the 
relative difficulty of predicting future scenarios. One driver of 
complexity is nonlinear dynamics, which occurs when the 
total relation is not a linear sum of the pieces. Nonlinear 
systems can lead to chaotic patterns, unpredictability, and the 
butterfly effect, where small changes to initial conditions 
make large impacts over time. Complexity can also arise in 
self-organizing collections, such as bird flocks, schools of 
fish, and traffic jams. The higher-level patterns of these 
complex systems are often impossible to efficiently predict, 
even when the lower-level component rules are fully known.  

In a more applied context, a systems view provides 
insights for how to enact effective change and create systemic 
solutions. A systems view is critical to addressing 
sustainability and socioeconomical problems with many 
interconnecting factors, from climate change to healthcare. 
Systems science presents a new paradigm, or underlying 
worldview, that nature and society must be understood as 
complex networks of connections, and that a relations-centric 
approach must be used to make effective change. 

Formal Systems
•Simple / Complex
•Emergent models

Systems Boundary
•Closed / Open
•Homeostasis 

Pattern Formation
•Symmetry 
•Phase transition

Nonlinearity 
•Chaotic motion
•Butterfly effect

Collective Behavior
•Flocking patterns 
•Evolution

Networks
•Social networks
•Robust networks

Systems Change
•Sustainability
•Paradigm Change

Figure 1-4 Topics of 
Systems Science 
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System Fundamentals 
 

A system is a collection of parts that follow certain relations. In the 
solar system, individual planetary bodies are governed by the 
relation of gravitational force, among other forces. In political 
systems, the elements are human social agents, which relate through 
interpersonal activities. A system can also be an abstract collection of 
concepts, symbols and relational rules. Abstract systems, such as 
logic, math, geometry, and linguistics, provide foundational tools to 
analyze and model the systems in nature. 

A pioneering figure in the concept of a general system was 
Ludwig von Bertalanffy, who first formulated the concept orally in the 
1930s and later through publications.1 Bertalanffy typically described 
systems as collections of objects that follow relationships modeled by 
differential equations, which describe how variables change over time. 
Bertalanffy also emphasized systems theory pivotal role in the unity 
of science, which is the notion that all the sciences should, in principle, 
be fully consistent and form a unified whole. The general study of 
systems provides a unifying approach to scientific knowledge and 
tools to communicate across disciplines.   

A more formal definition of systems was introduced in the 
1960s by Mihajlo Mesarovic, who defined a system as a set of 
relations between object elements.2  This definition is inclusive of 
mathematical equations, but it is more powerful because relations can 
also include logical expressions. Mesarovic’s definition was further 
developed by George Klir and others to define a general system to be 
an ordered pair of elements E and relations R, written as ! = (E, R). 
Other formal definitions of system have also been proposed that 
provide more details on different levels and complexity measures.3  

This book will utilize the definition of a system as a set of 
elements E that follow a set of relations R, written S	= (E, R). These 
elements can be anything, like atoms, chemicals, organisms, social 
agents, or abstract symbols of a language, which follow particular 
relations that govern the behavior. For ease of expression, this book 
will often only denote the relevant governing rules rather than 
including all the elements and relations. For example, a system that 
contains and follows the rule {x = 0} will be written as S : {x = 0}, with 
“:” meaning “such that”, as shown in Figure 1-5.   
 

    S = (E, R)       System  = (Elements, Relations)        S : {Governing equations} 

 

Figure 1-5 Definition of a System  
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General System: A general formal system can take on any elements 
and relations relevant for a given model, such as an atomic system, a  
solar system, an ecosystem, and so forth. While traditional disciplines 
typically study one type of system in isolation, systems science takes 
an interdisciplinary approach to study all kinds of systems and the 
connections between systems. Commonly studied systems across 
disciplines, with their elements and relations, are shown in Figure 1-6.  
 

System: S Element: E - (Types) Relations: R  
Logic Proposition - (True/False) Axioms  
Language  Letter - (a, b, c, d, e, f, g, ….) Grammar  
Computer Bit - (1 or 0) Calculation rules  
Atom Quark - (Up/Down, Colors) Strong force  
Molecule Atom - (H, He, Li, etc.) Electromagnetic  
DNA Nucleotides - (A, T, C, G) Molecular bonds  
Cells Cellular Parts - (DNA, ...) Intercellular   
Neural Network Neuron - (Firing or Off) Electric signals  
Ecosystem Organism - (Prey, Predator) Food web  
Society Social Agents - (Humans, …) Social relations  

 

 

Figure 1-6 System Units Across Disciplines  

An intriguing interdisciplinary result is that one model can be 
applied to surprisingly different real-world systems. For example, 
exponential growth equations that model bacteria populations can also 
model investment growth. 4  Bacterial growth and compounding 
investments are not driven by the same mechanisms, but can be 
analyzed in similar ways because they follow similar growth patterns. 
These commonalities are due to the fact that “formal” models, like 
math and logic, are true by virtue of their form irrespective of the 
particular content. Math does not care what a variable, like x, is 
referring to in a given equation, like x1 = 1.10(x0). While formal 
systems are indifferent to what they represent, the scientific method 
works to identify more useful models to understand nature.  

An important concept is that an element’s identity in a system 
depends on the relations that govern it. In order for a given variable, 
like x, to have meaning, it needs to be related to something else in the 
formal system. Once a given relation is defined in a system, like x is 
twice as large as y, then the various parts are given relevant meaning. 
Even the identity transformation, x is equal to x, is a type of relation. 
An element’s identity depends on the relation of being equals to itself, 
x = x, and not equal to other elements, x ≠ (not x). At its core, formal 
systems are about the relations between things, not things themselves. 

Example 1.3 
Nesting Systems 

The elements of a 
system can include 
other systems, and 
nest together. 
 

 
 
 
 

 
 
 
 
 
 
 

S1 = (E1, R1) 
S2 = (S1, R2) 
S3 = (S2, R3) 

 
A system S2 can add 
relations R2 on 
another system S1.      
Only equivalent or 
emergent, rather 
than new, relations 
are allowed when 
each nested model 
interprets shared 
universal behavior. 
 
 

E1 

R1 

S1 

R2 

S2 

R3 

S3 
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Emergent Models: Emergent, higher-level, systems SHigher model 
a subset (a part of the set) of the domain of scenarios from lower-
level models SLower, following the mapping limit(SLower) → SHigher. 
A common way to limit a system is to only consider collective 
properties. For example, the higher-level model of temperature is  
based on the average energy in a collection of particles and does 
not model each particle’s state. Many properties of natural systems, 
like phase, solidity, conductivity, and chemical reactions are 
emergent properties that only come about in large collections. Even 
more emergent properties come by limiting systems in other ways, 
such as setting variables, like friction, to zero as well as limiting the 
ranges of energies considered.  
 

 
      limit(SLower) → SHigher             Domain        SLower      SHigher   

 

 

Figure 1-7 Emergence Definition  

 Emergence plays an essential role in bridging between 
disciplines. In principle, the lower-level model of physics maps to 
the higher-level model of biology, biology maps to psychology, 
and so on. While higher-level domains are always of subset of 
lower-level domains, many emergent models are not efficiently 
predictable by lower-level models. Higher-level theories are often 
found without being derived from lower-level counterparts. 
Systems science simultaneously develops theories addressing 
different domains, like multi-layered maps of a single reality.  

  
Real Systems:  The systems of nature, or real systems, is an 
idealized notion how nature itself functions. A given model can 
never be proven to truly describe nature and real systems are in 
general unknowable, however, scientific methods attempt to 
provide the best possible explanations. In current scientific theories 
of real systems, spacetime creates the background for the 
distribution of matter, energy, and information, which follows the 
principle of least action, conservation laws, and other relations. 
These models include an asymmetric dimension of time that began 
at the Big Bang and allow processes to be either reversible or 
irreversible. Real systems display a wide range of patterns across 
different sizes and complexity levels that are described by 
emergent models, such as physics, biology, and sociology. Some 
common patterns in modeling natural systems are introduced in the 
following section and expounded on in subsequent chapters. 

Example 1.4 
Emergent Collections 

In a joining limit, the 
lower-level system SL 
models parts, while the 
higher-level system SH 
models collections. In 
emergent models, SH  

is only mapped one 
way from joining SL 
and is unequal as detail 
is lost,  Join(SL) → SH. 
In equivalent models, 
SH equals the joined SL 

and can be mapped 
both ways, losing no 
detail,  Join(SL) ↔ SH.  
 

 
  
 

 
 SL  = (     ,         ) 
 

 SH = (      ,         ) 
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Boundaries and Flux: Natural systems are often defined with 
boundaries, which may be open or closed to change. The symbol Δ 
represents the change of a quantity X from initial to final states,  
written ΔX = Xfinal – Xinitial. A closed system has no inputs and 
outputs over the boundary, and requires that conserved quantities 
are in equilibrium {ΔXConserved = 0}. In contrast, an open system can 
have inputs and outputs over the boundary, which allows conserved 
quantities to have a non-zero change and be in flux {ΔXConserved ≠ 0}. 
In thermodynamics, “isolated systems” have no change in matter 
and energy, while “closed systems” have no change in matter, but 
are open to energy. The concept of closed versus open systems can 
apply to many different fields, from engineering to ecosystems.  
 

 
 

 

 
Figure 1-8 Closed vs. Open System 

 

Symmetry and Fractals: Identifying repeating and symmetrical 
patterns can provide insight into a system’s structure. Symmetry is 
defined as changes in a system that result in a state identical to the 
initial state. A symmetry follows the equation {X → X}, where a 
given transformation or mapping →, like a rotation or movement, 
results in the same initial state X. A bilateral image is one that can 
be flipped along an axis of symmetry to produce an image 
indistinguishable from the original. Fractals are another type of 
symmetry that repeat over size scales, instead of rotational or 
translational movement. Symmetry can be observed in many natural 
patterns, from cubic crystal lattices to the fractal patterns of a 
Romanesco broccoli. Symmetrical patterns often arise in nature 
because these patterns frequently minimize energy and resources.  
 

 

                            
                              Bilateral                                 Cubic                                   Fractal                             

Figure 1-9 Symmetry in Systems  

  
 

  Flux 

Example 1.5  
 

Systems can express 
how inputs EInput  
transform, or map → 
over a process, to 
outputs EOutput. The 
change is defined as 
ΔE = EOutput  - EInput , 
showing quantities 
that are steady or 
differ over a process.  

 

      

 

 
EInputs            EOuputs 

 

 
Map, Process,  
Transformation 

 

Closed System 
{ΔXConserved = 0 } 

required 
 

Open System 
{ΔXConserved ≠ 0 } 

allowed 
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Entropy and Order: The interplay of order and disorder, measured 
by entropy, plays an essential role in systems. Entropy grows when 
there is a higher number of equally likely microstates that result in 
the same overall macrostate. Ordered systems have low entropy and 
disordered systems have high entropy. For example, Figure 1-10 
graphs 100 boxes that are half white and half grey. There is only one 
state for all grey boxes to be in the center, which is considered highly 
ordered. In contrast, there are many possible states where grey and 
white boxes are intermixed among the interior and exterior regions. 
The most complex systems, like life, often arise in the transitional 
space between order and disorder.  

 

 

       

    Low Entropy (Ordered)                         High Entropy (Disorder) 

Figure 1-10 Entropy and Order in Systems 

In thermodynamics, entropy relates to energy dispearsal and 
the decreased ability for a system to exert useful work. The second 
law of thermodynamics states that the entropy of an isolated system 
tends to increase, leading to energy dispersal and disorder over time. 
However, it is possible for a subsystem within an isolated system to 
receive energy to reduce entropy within a bounded region. 
Energetically open systems, like steam engines and metabolic 
reactions, can use external energy sources to power entropy-reducing 
processes that are able to increase order and organization.  

 
Information Processes: Material and energetic patterns in spacetime 
can serve as markers, which store information that can be encoded or 
decoded via communication, computational, and informational 
systems. Information is defined through Shannon entropy in the units 
of bits, which relates to how much surprising information is provided 
by a message. Communication systems can be built to encode, 
decode, and transmit information over channels, like sending music 
over radio waves. Additionally, computers can be built to store, 
process, and manipulate information. Information also plays a critical 
role in biological systems, such as DNA and neural networks. 
Physical systems can either be influenced by matter and energy, or 
influenced by information marked by matter and energy, or some 
combination of the two. 

Co
mpl
ex 

 

Example 1.6  
 

The assumption of a 
low entropy past, 
like the Big Bang, 
allows the entropy of 
the universe to 
increase over time,  
enabling the past to 
be distinguished 
from future states in 
a direction, or arrow.  
This occurs even 
though lower-level 
physics is time 
reversible, which 
means it looks the 
same forwards or 
backwards in time. 

 
Time 

 

Universe 
(Low Entropy) 

Universe 
(High Entropy) 
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Complexity and Irreducibility: A critical attribute of a system is the 
relative difficulty of predicting final states. Some algorithms, like 
multiplication, are easy to solve for large numbers. In contrast, 
problems optimal chess moves become increasingly difficult when 
scaling up in size. Many systems in nature, like weather patterns and 
biological processes, have difficult or impossible to solve algorithms 
when the number of components increases, requiring an unfeasible 
amount of computational resources to predict future states.   

Algorithms describing complex systems often have no 
efficient means produce solutions. The halting problem, for example, 
considers a computer program that follows specific rules of 
manipulating symbols that may lead to a command to halt. Knowing 
the rules of the program does not tell you in advance if a program will, 
or will not, halt. The only way to test halting is to run the program, 
potentially indefinitely, with no knowledge if the program will ever 
stop. Alan Turing proved in 1936 that a general algorithm to solve the 
halting problem cannot exist.5 The halting problem is undecidable, 
meaning a yes or no answer cannot be established ahead of time.  
 
Sustainability and Resilience: Systems theory provides a toolset both 
to model the connections of society and nature, and to design 
sustainable solutions. System dynamics, for example, models resource 
stocks, flow rates, and feedback. A sustainable system occurs when 
the replenishment rate equals the extraction rate, as shown in Figure 
1-11, written as {DReservoirs = 0}. Resource reservoirs must be used 
at a rate below replenishment in order for humanity to sustainably live 
on Earth and preserve resources for future generations. Systems 
thinking can also be used to identify ways to reduce resource use 
across sectors like energy, waste, and buildings, as well as create 
resilient social networks that adapt to unforeseen volatility. 

 
Transforming Systems: Transformation is the change of a system 
itself over time, written as SInitial ≠ SFinal. Humans are continually 
changing our scientific and socioeconomic systems. Facilitating 
change is critical to creating large-scale impact and effective solutions. 
Systems thinking provides essential tools for enacting effective 
change and creating processes that can adapt over time.  
	
	
 

 
 Figure 1-12 Transformational Systems 

SInitial SInitial ≠ SFinal SFinal

Example 1.7 

 

D Reservoirs = 0 

Replenishment 

Extraction 

Figure 1-11      
Sustainable Reserve 

 +x / t 

 -x / t 
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Foundational to Applied Systems 
 

Systems can be categorized along a spectrum of foundational to 
applied systems. Foundational systems pose axioms, or rules, of a 
given model. Theoretical systems then use deductive reasoning to 
prove if a given conclusion is true following a set of axioms. For 
example, there are many theorems that are provable with the axioms 
of Euclidean geometry. Methodological systems perform tests to gain 
further results, such as physically measuring geometric ratios rather 
than finding exact proofs. Applied systems apply functional models to 
real-world scenarios, like applying geometry to building construction. 
Methodological and applied systems also use inductive reasoning, 
which extrapolates observations into larger conclusions as well as 
abductive reasoning, which considers which predictions work the best. 
However, as expounded by the philosopher David Hume, just because 
an event has occurred numerous times does not mean that it is 
guaranteed to occur again.6 Methodological and applied systems are 
not guaranteed to be completely valid, just practical. The goals of 
foundational to applied systems are summarized in Figure 1-13. 

 

 
 

  Foundational Systems Pose a model that follows specific axioms, or rules 
 

  Theoretical Systems 
 

Extrapolate from axioms to other provable models 
 

  Methodological Systems 
 

Utilize tests and approximations to inform models 
 

  Applied Systems 
 

Models for implementation in real-world systems 
 

Figure 1-13 Foundational to Applied Systems 

Foundational and theoretical systems include abstract fields 
like set theory, logic, and math. Fields like physics, chemistry and 
biology build-off foundational systems to specify theories of nature. 
Science attempts to model real systems as accurately as possible by 
comparing models with large empirical datasets. Another way to 
distinguish useful scientific theories is through a model’s ability to be 
falsified. Being able to be tested to be true or false is essential to 
provide additional benefit to explaining nature. Fields like sociology, 
economics, and politics study a variety of more applied systems in our 
world. Methodological and applied systems do not always have a strict 
or consistent set of axioms, but rather work to find what models serve 
the best functional purposes. Examples of foundational to applied 
system are summarized in Figure 1-14.  
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General 
Systems 

Foundational 
Systems  
  (examples) 

Theoretical  
Systems 
  (examples) 
 

Methodological 
Systems 
  (examples) 
 

Applied  
Systems 
  (examples) 
 

 

 

 
 

 

 
 

 
 

 

Figure 1-14 Foundational to Applied Examples 

All methodological and applied systems about nature should, 
in principle, be consistent and form a unified whole. This unity follows 
the assumption that science identifies universally valid principles of 
one reality that are symmetrical to any place, time, and scales of size. 
While models of nature may be split into different types and applicable 
domains, nature itself is not delineated between physics, biology, and 
other fields. Even though this unity is commonly assumed, disciplines 
often become highly specialized and siloed. System theory supports 
the unity of science by providing unifying terminologies and 
methodologies that crosses all disciplines of logic and science.   

General System: S = (E, R)

Logic Set Theory Math Graphs

Propositional 
Logic Linguistics Algebra Geometry

Information 
Theory

1st Order 
Logic Calculus Networks

Physics Biology Chemistry Neuroscience

Ecology Geology Computers Psychology

Engineering Sociology Healthcare Sustainability

Real Systems  
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Formal systems, like logic and math, may attempt to model 
nature, yet there is no test to confirm that a model is how reality 
functions. This concept is summarized by statistician George Box’s 
phrase, “All models are wrong, but some are useful.”7 Real systems 
are similar to a black box, where experiments can be tested to 
determine what may be inside the box, but the exact internal 
mechanisms cannot be known. At the same time, formal systems arise 
within and are limited by real systems. For example, physical markers 
(e.g. written symbols, neural activity, computers) can symbolize a 
formal system that provides a model beyond the universe, however it 
is impossible for physical markers themselves to violate the properties 
of real systems. The modeler is always part of the reality being 
modeled and there can never be a truly objective perspective of nature.  

 

 

 
 

Figure 1-15 Formal and Real Systems 
 
There is a difference between logical versus real-world 

validity. Formal logical and mathematical systems are true or false 
based only on the form of the argument, not on real-world data. For 
example, the transitive argument—if a = b and b = c, then a = c—is 
always true, regardless of the specific content. Even the argument, “If 
you are a human and all humans are immortal, then you are immortal,” 
is a valid formal statement. Obviously, humans do not live forever, so 
this statement would not be expected to be true based on the 
background theories of biology. Methodological and applied systems, 
like physics and biology, work to understand if evidence supports if 
the content within a given formal model is expected to be valid.  

 
 

  

           Formal Approach 
 

Valid based on the form of argument: 
if a = b and b = c , then a = c is true 

 

Foundational Systems, Theoretical Systems 
 

(e.g. Logic, Math, Sets, Graphs, Geometry) 

   Scientific Approach 
 

    Valid base on studying of the content:  
  a = human and b = immortal, then a = b is false 

 

                   Methodological Systems, Applied Systems 
 

(e.g. Physics, Chemistry, Biology, Sociology)  
 
Figure 1-16 Formal and Scientific Approaches  

Formal System
S = (E,R)
(model)

Real System

(unknown)

Provides Model 

Provides Data 

 

Example 1.8 
Map vs. Reality 

Studied 
by 
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Systems science lies at the intersections of formal systems and 
real systems. At the formal level, systems science works to improve 
theoretical concepts and representations. On the applied side, systems 
science works to develop toolsets, practices and methodologies that 
are backed by real-world results. At the intersection of formal models 
and the real-world, systems science studies fundamental principles 
useful for natural sciences, such as boundaries, flux, entropy, 
complexity, and emergence, as shown in Figure 1-17. System 
fundamentals supports the unity of science by providing overarching 
principles of systems that allows communication across all disciplines. 

 
2 

 
 

            Figure 1-17 Systems Science Across Theory and Practice 

 
Summary 

 

Systems science provides a unifying view to study the world, based 
on connection and complexity. A system, defined as a set of elements 
and relations, can apply to different scenarios. Foundational and 
theoretical systems create abstract formal models that can be used in 
methodological and applied systems to study real-world systems. 
Systems across disciplines have reoccurring patterns, such as 
equilibrium, flux, symmetry, organization, complexity, sustainability, 
and transformation, which will be elaborated on in subsequent 
chapters. Additionally, the concept of emergent patterns is critical to 
understand the distinctions between lower-level and high-level 
models of nature. Systems theory takes an interdisciplinary 
educational approach, where multiple models—like physics to 
biology—are considered together in parallel and are ultimately fully 
consistent and unified descriptions of nature.  
  

Systems 
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Chapter 2 Formalization 
 

 
 

 
This chapter will provide a generalized language to define a system, 
regardless of what kind of elements and relations are being considered. 
A general system definition provides insights for how models 
themselves are established, providing a singular approach that can be 
applied to patterns that span all sizes, time scales, and complexities. 
Systems science is in large part a metatheory, which studies how 
theories themselves are developed. Contrary to traditional science, 
which primarily studies specific models, systems theory develops 
unifying methods that apply to any kind of model.  

Set theory can be used to bring further clarity to defining a 
system. A set is defined as a collection of members elements E. Going 
beyond this, a system is a collection of object elements E that also 
follow relations R, as shown in Figure 2-1. For example, a set of books 
would just include an unorganized collection of books, while a system 
of books can include additional relations, such as alphabetical order, 
author name, and categories that systemize the collection. A system 
can also simplify into a set when the relations are empty or equals E. 
The elements and relations of a general system can be further specified 
to apply to certain logical, mathematical, or formal models. These 
models can then be used to study real-world phenomena in physical, 
biological, and sociological systems.  

 
 

S =	(E, R) 
 

Figure 2-1 Equation for a System  

Example 2.1  
General System 

A general system 
can represent any 
given formal model, 
like logic, math, 
graphs, networks, 
and computer 
processess. 

Example 2.2 
Graphing Systems 

The system S below 
has three elements 
a, b, c, as well as 
the relation drawn 
with arrows.  
 
 
 
 
 
 

 
In set notation:  
 

E = {a, b, c} 
R = {(a,b), (b,c),  
       (c, a), (c, b)}  

 
  

 

 

 

a 

 

c 
 

b 
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Elements and Relations 
 

Systems can be defined with set theory as a collection of elements 
E and relations R, written S	=	(E, R). The elements of a system 
could be anything, like three arbitrary members E = {a, b, c}, the 
group of two people E = {Joe, Jane}, a list of numbers E = {2, 3, 
5, 7}, or logical propositions, E = {p, q}. The elements could 
continue infinitely, like the natural numbers E = {0, 1, 2, 3, …}, 
contain other sets E = {{ax, ay}, {bx, by}}, or be other types of 
mathematical objects and logical classes.   

A system is more general than a set because there exist 
additional relations R that add a structure of rules to the elements. 
For example, a system could contain the variables x and y that 
follows the relation that R = {x + y =10}. Numerous relations, or 
rules, can simultaneously apply to elements, such x plus y equals 
ten, R1 = {x + y =10} and x is greater than y, R2 = {x > y}. Multiple 
mathematical rules form a system of equations, which may be 
solvable or unsolvable. More generally beyond math, a system is 
any collection of elements that follow any set of relational rules.   

A relation R describes how one set maps to another set and 
can be represented as an ordered list, or drawn  as arrows. For 
example, consider the two sets of A = {1, 2, 3} and B = {1, 2, 4}, 
where a is a member of the set A and b is a member of B. The 
relation of equality a = b are the pairs of (a, b) that are equal in both 
sets, which has the solutions {(1, 1), (2, 2)}. The relation of greater 
than, a > b, has the solutions with the pairs of {(2, 1), (3, 1), (3, 2)}, 
meaning 2 > 1, 3 >1, and so on. The relation of a < b has the 
solutions {(1, 2), (1, 4), (2, 4), (3, 4)}. These different relations are 
drawn also below in Figure 2-2. A system can have any number of 
relations, which are able to provide insights to the patterns of how 
elements relate to one another.  

 
 

  A           Ra=b       B                              A          Ra>b          B                            A        Ra<b        B 

 
 

   Equality (=) Relation    Greater Than (>) Relation                     Less Than (<) Relation 
 

Figure 2-2  Defining Relation Sets 

1
2
3

1
2
4

1
2
3

1
2
4

1
2
3

1
2
4

Example 2.3  
Relation Tables  

Relations can be 
written as a tables, 
such as a collection of 
people that are part of 
different social groups.  

Ava Student 
Ben Student 
Ben Parent 
Bob Parent 
Bob Teacher 
Ted Student 

 
This relation can be 
written as pairs:  

 

            (Ava, Student)          
R =      (Ben, Student)     

                   (Ben, Parent) 
          … ,   … 

 
Multiple tables can be 
linked to make a 
relational database.
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 Relations can represent mathematical functions, which map 
specific inputs to certain outputs as pairs (input, output). For example, 
the relation pairs R = {(1, 1), (2, 4), (3, 9), (4, 16) …} follows the 
pattern that an input of x outputs x2, such as 12 = 1, 22 = 4, 32 = 9, and 
so forth. This relation can also be represented as the function f (x) = x2, 
where the input of x will lead to the output equal to x2. Even more 
complicated functions can be written in pairs, such as f (x) = x3 + x, 
written R = {(1, 2), (2, 10), (3, 30), …}. Relations can also include 
multiple variables such as f (x, y) = x + y, which has two inputs of x 
and y, and a single output, written as R = {((1, 2), 3), ((1, 3), 4), …} 
expressing 1 + 2 = 3 and so forth. Other equations for systems, like 
equilibrium or flux, can be expressed as relations as well. 
 Relations can be defined through the Cartesian product, which 
contains all ordered lists of elements from multiple sets. For example, 
if A = {a1, a2} and B = {b1, b2} then the Cartesian product A × B 
equals {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}, or all pairs (a, b) where a 
belongs to A and b belongs to B. A binary relation on the two sets A 
and B is equal to a given subset ⊆ of the Cartesian product, written 
RBinary ⊆ A × B.8 Relations, like a = b, a > b, or a < b, are all certain 
subsets of A × B. The Cartesian product can be extended to more sets, 
like the three sets A × B × C that define all possible triplets (a, b, c). 
 Relations can take different numbers of elements, determining 
the “arity”. A unary relation has a single element, like (a), while a 
binary relation considers two elements, like (a, b). A ternary relation 
represents the relations between three variables, such as (a, b, c). For 
example, a ternary relation could be that a thinks that b and c are 
friends, requiring three variables. A n-ary relation uses n number of 
variables (e1, e2, …. en) and is the subset of R ⊆ E1 × E2 … En times. 
 A general system can be formally defined as a pair of elements 
that follow relations, S = (E, R). Each relation R = {R1, R2, … Rr} is a 
subset of the Cartesian product of elements to the n-th order, following 
E × E × E × … En  = En. For example, with the elements of two sets 
E = {E1, E2} (e.g. inputs and outputs) and n = 2, the system’s relations 
will be binary, which follows R ⊆ E × E, or R ⊆ {E1, E2} × {E1, E2}. 
This encompasses the binary relations between the two sets and to 
themselves, written R ⊆{(E1, E1), (E1, E2), (E2, E1), (E2, E2)}. 
 
 

         S = (E, R)        System = (Elements, Relations)      

   E = {E1, E2, … Ee}     R = {R1, R2, … Rr}     Rr ⊆  En     n = Relation order 

 
Figure 2-4 General System Definition 

Figure 2-3 Cartesian  
Product of Sets  

           E = {1, 2, 3} 
 

E×E = 
 

(1, 1), (1, 2), (1, 3) 
(2, 1), (2, 2), (2, 3) 
(3, 1), (3, 2), (3, 3) 

 

 
E×E×E= 

 

(1,1,1), (1,1,2), (1,1,3) 
(1,2,1), (1,2,2), (1,2,3) 
(1,3,1), (1,3,2), (1,3,3) 
(2,1,1), (2,1,2), (2,1,3) 
(2,2,1), (2,2,2), (2,2,3) 
(2,3,1), (2,3,2), (2,3,3) 
(3,1,1), (3,1,2), (3,1,3) 
(3,2,1), (3,2,2), (3,2,3) 
(3,3,1), (3,3,2), (3,3,3) 
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Operator Order 
 

Formal systems often introduce operators, a type of relation that maps 
an input into a single output value. Operators are less general than 
relations, as they only allow one-to-one mappings of inputs to outputs. 
Like relations, operators have different “arity”, or order, depending on 
the number of input elements. A unary operator relates one element to 
an output. For example, in math the negative symbol is a unary 
operator that can be put in front of a single element, leading to the 
function f (x) = -x that describes how an input of x outputs –x. A more 
general way to define a unary operator is with a function from a single 
input to an output, written f : E1 → EOut, or as the pair (E1, EOut). 
 A binary operator connects two elements. An example of a 
binary operator is the plus symbol that adds two terms  f (x, y) = x + y. 
Binary operators are defined by the function f: E1× E2 → EOut, and can 
be represented as a relation with an ordered triple (E1, E2, EOut). In 
general, a n-ary operator can be expressed by (n+1)-ary relations. The 
relations are one term longer to account for the output EOut. There are 
also ternary and n-ary operators, which can be expressed as the 
combination of multiple binary operators.9 Many types of operators 
are used in formal systems to provide practical ways to deduce results, 
some of which are shown in Figure 2-5. 
 
 

 
Relation 

Order 
Operator 

Order 
Set Theory 

E={members} 
Mathematics  
E={variables} 

Logic 
E={propositions} 

n = 1 
(Eout) 

Nullary Operator 
f:  { } → EOut 

a 
a 

Members 
 

C 
C 

Constant 
 

⊤ Truth 
⊥    Falsity  

n = 2 
(E1, Eout) 

Unary Operator 
f:  E1 → EOut 

C Compliment  – Negative  ¬ Negation 
|  Cardinality ! Factorial p Identity  
P Power set log Logarithm ∃    There exists 

n = 3 
(E1, E2, Eout) 

Binary Operator 
f: E1×E2 → EOut 

| Such that = Equals ∨ Or 
∈ Member of + Addition ∧ And 
∩ Intersection  · Multiply → Implies 

n = 4 
  (E1, E2, E3, Eout) 

Ternary Operator 
f: E1×E2×E3 → EOut 

Pairing operator 
for three members 
(a, b, c) 

Triple cross 
product of vectors 
       A×B×C 

If p and q are 
true, then r is true 
   (p ∧		q	→ r) 

 … … … … 
(n + 1) 
(E, … En, Eout) 

n-ary Operators 
f: E1×… En → EOut 

Order list of n  
(a1, ( a2, (a3, .. an) 

∑ Sum of n If a1 and a2 … 
and an-1, then an ∫ Integral  

 
 

 

Figure 2-5 Operators in Formal Systems 
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 Operators are commonly used in logic. The unary truth 
operator maps an input proposition p of true T or false F to an output 
result, written as p → output or the pair (p, output). In this case, there 
are four unique ways to match each input with a single  output. 
These four variations represent the four unary truth operators. When 
the output is equal to the proposition’s truth value, {(T, T), (F, F)}, 
it represents an identity of p; when the truth value is opposite, it is 
called the negation ¬. A tautology ⊤ occurs when the output of p is 
always true, like “x = y or x ≠ y”, and has the pairs {(T, T), (F, T)}. 
A contraction, or falsity ⊥,occurs when p is never true, like “x = y 
and x ≠ y”. The relation arrow diagrams in Figure 2-6 represents the 
unary logic operators.  
 

 

(  p  ,  output )       (  p  ,  output )      (  p  ,  output )      (  p  ,  output )                

                                  
 

   Identity: p            Negation: ¬       Tautology: ⊤      Contraction: ⊥           

Figure 2-6  Unary Logic Operators 

 Logic heavily utilizes binary operators, like and, or, and 
implies, that map two input propositions of p and q to an output, 
written f : E1×E2 → EOut. The product {T, F}×{T, F} has four pairs 
{(T, T), (T, F), (F, T), (F, F)}. The binary operators describe how 
these four values can map to unique values of truth or falseness. The 
binary operator and, written as ∧,means both p and q must be true 
for the output to true, written (T, T) → (T). There are 16 unique 
binary operators, including or, implies, and others that map (p, q) to 
an output, four of which are displayed in Figure 2-7.  
 
 

((p, q), output)    ((p, q), output)   ((p, q), output)    ((p, q), output)          
 

                                  
  p and q: ∧            p or q: ∨         p implies q: →    Tautology: ⊤             
 

Figure 2-7 Binary Logic Operators 
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Example 2.4  
Truth Diagram 

All 16 binary logical 
operators can be 
displayed as Venn 
diagrams of two 
circles, representing 
two propositions 
(inside circle) and 
their negations 
(outside circles) filled 
for in truth or left 
blank for false.  
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Formal Systems 
 

One of the most basic formal systems is a formal language, 
which has the elements of an alphabet A and alphabet lists (called 
strings) X that follow certain relations R. A formal language can 
be defined as SLanguage = (A, X, R), which arises from the general 
system definition S= (E, R) when E = (A, X). For example, the 
alphabet could be Latin script A = {a, b, c, …} and one string 
could be a story, X = {Once upon a time ...}. The relations R 
represent the rules of the alphabet used in the language, such as 
grammar rules or other spelling patterns that apply.  

A useful tool to study formal languages is to take the set 
of all possible arrangements of the alphabet, written as A*. This 
produces an endless list equal to the infinite Cartesian product, 
written A* = A × A … × A∞. For A = {a, b}, the term A* would 
include {{}, (a), (b), (a, a), (a, b), (b, a), (b, b), …}. For a given 
alphabet, A* represents all possible combinations of letters and 
contains every expressible message, story, or theory. Most of 
these lists are not well-formed, but a certain subset of 
combinations forms words and grammar that are part of the 
language, written SLanguage ⊆	A*.10 When the entire behavior can 
be defined by one relation, a general system also equals S ⊆	E*. 

Another formal system is an automaton, which describes 
the manipulation of symbols, like a computer. An automata with 
finite inputs is defined as SAutomaton	= (A, Q, Q0, Qf, R).11 Similar 
to a formal language, an automaton contains an alphabet of 
symbols A, but also a set of states, Q = {Q0,  Q1, Q2, …} that could 
represent things like on, off, or specific values. This system also 
includes an initial state Q0 as well as the set of allowed final 
state(s) Qf, which enables the program to stop. To determine how 
the system changes and manipulates the symbols, a relation R is 
introduced called the state-transition function, which maps the 
states and symbols to a new formulation R : Q × A → Q.  

The alphabet and states of an automata can have both 
internal inputs and external outputs. This is seen in computers 
that relate many internal states of 1 or 0 to external keyboards 
and visual displays. This is accomplished by having both an input 
alphabet Ai and output alphabet Ao, each with their own mapping 
relation, following Ri : Q × Ai → Q, and Ro : Q × Ao → Q. Other 
automata introduce other measures, such as a separate tape that 
can serve as a memory storage, and expanding sets to non-finite 
values.  

Example 2.5 

Formal systems are 
made of symbols  
from an alphabet A, 
and relational rules 
between symbols. A 
subset of all possible 
strings of symbols 
are well-formed 
grammatically, and a 
subset of well-
formed statements 
follow the axiomatic 
rules of a langauge.  

 
 
 

Alphabet A 
  a, b, if, then, +, =, ≠  

 

  Strings of Symbols 
   if a =,  + b a = , …   

 
 Well-formed  

 if a = a then a = b   
 

  Follows Axoims 
  if a = b then b = a  

 
 

 SLanguage ⊆ A* 
   A* = A × A × … A∞ 
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Formal systems of logic provide a means to assess truth 
statements and deduce conclusions for a formal language. The 
elements in a logical system include propositions (statements that can 
either be true or false) P = {p1, p2, p3, ...}. A logical system features 
various kinds of relations, including a set of operators O that connect 
propositions, like p ∧	q (p and q), p ∨		q (p or q), or p →	q (p implies q). 
Logical systems also have the relations of inference rules I and axioms 
Z, which are the valid rules for assessing truth. Together, a logical 
system can be defined as the ordered list SLogic = (P, O, I, Z).  

Logical systems can combine multiple propositions to reach a 
conclusion through the rules of inference. For example, if p is true and 
p → q, then q is true. Also, if p → q and q → r, then p → r. The rules 
of inference in proposition logic are included in Figure 2-8 and use the 
three dotted symbol ∴	 to note when conclusions are made. Steps taken 
to reach a logical conclusion can also be expressed in truth tables or 
with Boolean algebra, which assign the value 1 to true and 0 to false.		
The underlying set of inference rules I and the axioms Z can change 
depending on the type of logical system being considered. First-order 
logic introduces new axioms and considers propositions with 
quantifiers, like for all x, or there exist x. There is also modal logic, 
which studies propositions that can be possibly true or not, and other 
kinds of logical systems that extend beyond traditional logic.  
 

 

 

Premise 1 
Premise 2 
∴	Conclusion 

 

p → q 
p  

∴ q 

 

p → q 
¬p  

∴ ¬q 

 

p → q 
p → r 

∴ p → r 

 

p∨	q 
¬p  

∴ q 

 

   p∨	q 
¬p∨	r 
∴ q∨	r 

 

  p  
 q  

∴ p∧	q 

 

 
 p 

∴ p∨	q 

 

 
p∧	q 

∴ p 
 

 
Figure 2-8 Rules of Inference in Propositional Logic 

Equivalence is an essential relation to transform statements 
into alternative, equal, forms to find solutions. An equivalence relation 
has reflexivity (p = p), symmetry (if p = q, then q = p) and transitivity 
(if p = q and q = r, then p = r).12 In category theory, which studies 
objects and their mappings, called “morphisms” (relations symbolized 
by →), objects like x and y are “isomorphic” and have equivalent 
underlying structures when there is a morphism from both x → y and 
y → x. It is essential that an isomorphism goes both ways to ensure the 
structures of the of objects are equivalent and have a one-to-one 
mapping to each other. Transforming logical statements and objects 
into new equivalent forms is an indispensable tool to prove if a 
premise is true, false, undecidable, or leads to contradictory results. 

Example 2.6 Laws 
of Thought 

Three classical laws 
of logic are:  

 

Identity  
For all p, it is true 
that p equals p. 
 

Non-contradiction 
Both p and ¬p can 
not be true. 
 

 

Excluded Middle 
Either p or ¬p is 
true, not both.  
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Another formal system is a mathematical system, defined as 
SMath	= (E, O, Z), which has the elements of mathematical objects and 
the relations of operators and axioms. Arithmetic considers elements, 
like the natural numbers E = {0, 1, 2, 3, …}, and operators like addition 
and multiplication, O = {+, -, ·, ÷, …}. These binary operators relate 
two elements and are a n = 3 relation, (x, y, output). Different 
mathematical systems introduce a variety of other operators and 
axioms Z. For example, the axioms of algebraic fields include identity, 
inverses, commutativity, and the other rules in Figure 2-9.13 Following 
these basic rules, mathematical statements can be manipulated to find 
conclusions.  

 

 
Axioms  Addition Multiplication 
Identity  a + 0 = a a · 1 = a 
Inverses a + (-a) = 0 a · a-1 = 1 
Commutativity a + b = b + a a · b = b · a 
Associativity  (a + b) + c = a + ( b + c) (a · b) · c = a · ( b · c) 
Distributivity a · ( b + c) = a · b + a · c (a + b) · c = a · c + b · c 

 

Figure 2-9  Field Axioms in Algebra 

A graph is a useful formal system to model complex systems 
with many interacting parts. A graph defines a set of vertices V and 
edges E between vertices, following SGraph	= (V, E).14 For example, 
Figure 2-10 shows the graph with V = {a, b, c, d, e} and the edges are 
defined as ordered pairs. Edges can represent an arbitrary relation and 
can be directional or non-directional depending if the pairs go both 
ways, like (a, b) and (b, a). Graphs can also be further generalized into 
hypergraphs, which allow edges that connect to any number of nodes. 
There are many other properties of graphs, such as being connected or 
the degree of centrality, which relates to the average number of steps 
required to reach all other nodes. Graphs can represent various 
mathematical structures and be useful in designing more resilient 
networks.  
 

 

       
 

 

Figure 2-10  Graph Systems 
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a: low centrality 
b: high centrality 

 

 

a 
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 A model, defined SModel = (U, σ, I), describes statements in a 
formal language, like logic or math, that are interpreted as true. A 
model considers a universe of possible values, called the domain of 
discourse U, along with the signature σ, which is a set of symbols that 
represents constants, functions, and relations. For example, a model of 
math could have the domain of the real numbers, U = {Real numbers}, 
and a signature of terms σ = {0, 1, +, -, ·, <, …}. The interpretation 
relation I assesses if a statement p happens to be true or not for a set of 
axioms that applies to the elements U and terms σ. I is a model of p 
when the proposition p is true in I. Models can be used to assess meta-
level properties, such as whether a theory is consistent and free of 
contradictions, and provide insight for interpreting truth in a system.  

A summary of various kinds of formal systems, from logic to 
math, is shown in Figure 2-11. These systems are all expressions of a 
general system S = (E, R) with different elements E and relations R. 
These formal systems also have many types of subclasses specified by 
certain relations (e.g. propositional logic versus first order logic). 
Additionally, many of these formal systems have similar underlying 
patterns and can have mappings to interchange from one to another.  
 
 

System  Equation E  Elements  R  Relations  

General  S = (E, R) E = {E1, E2, E3,…} R = {R1, R2, …}, Rr ⊆ En   

Formal 
Language  S = (A, X, R) A = alphabet {a, b, c, …} 

X = string(s) or sentences 
R = {language relations, 

grammar, inference}  

Automata 
(Finite) S = (A, Q, Qi, Qf, R) 

A = alphabet  
Q = set of states 
Qi = initial; Q f = final  

R  = Q × A → Q 
     {relation to new state} 

Logic S = (P, O, I, Z) P = propositions {p, q, …} 
which are true or false 

O= {operators: ∧, ∨, …} 
I = {inference rules} 
Z = {axiom rules} 

Math S = (E, O, Z) E = {integers, real 
numbers, fields, …} 

O= {operators: +, -, … } 
Z = {axiom rules} 

Graph  S = (V, E) V = vertices {v1, v2, …}  E= {edges connect two 
given vertices} 

Models S = (U, σ, I) U = Universe, Domain 
σ = Symbols in theory   

I = {Interpretation 
function of truth} 

 
Figure 2-11  Overview of Formal Systems  
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Universal Potential  
 

The universal set U, or domain, establishes the broadest set of a 
system’s elements. For example, with the two sets A = {1, 2, 3} and 
B = {4, 5, 6}, a universal set could be U = {1, 2, 3, 4, 5, 6}. Taking a 
broader perspective, the universal set could be extended to the 
natural numbers U = {1, 2, 3, … ∞}, or even the continuous real 
number line. From a graphical perspective, the universal set U is the 
outer box which contains any given sets, like A, and their 
compliments, like AC, following AC = U – A. When considering a 
universal set of logical outcomes, the set A can represent a 
proposition p and AC is the negation ¬p, following ¬p = U – p.  
 

 

 
 

Figure 2-12  Universal Set 

The universal set can be thought of as the background 
needed to pose a system, like the paper needed to draw a given model. 
Prior to distinguishing particular objects, the universal set is like an 
undifferentiated potential. With no specific elements defined, a 
system can be posed with empty elements E ={} and empty relations 
R = {}, establishing the universal set as empty U = {}. In this case, the 
universal relation (relation with all elements) will equal the empty 
relation (relation with no elements). Once elements are included, the 
universal set differs from the empty set and distinguishes certain parts. 
Even with a closed universal set, there is an extreme openness for any 
scenarios to be created within. 

The notion of a universe of discourse is essential in using 
logical quantifiers, like for all ∀ and there exist ∃. For all ∀x means 
that for all x that are members ∈ of the universal set U, the property, 
or predicate P(x) is followed, written ∀x ∈ U, P(x).  There exist ∃x	
means that at least for one of x that is a member of U, the predicate 
P(x) holds true. The universal set provides the boundary of all 
possible outcomes. Logical systems that use quantifiers, including 
arithmetic rules extending to all numbers, are called first-order 
systems. Extending further, second order logic applies quantifiers on 
the predicates themselves and the relations between predicates. 

U = Universe A 

AC 
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Another approach to define a universal set is through a 
behavioral view. The “universum” U set is defined as the totality of 
states a system could be in prior to applying laws, and the behavior 
B, is the subset of outcomes of a given model, following B ⊆ U.15 
For example, when modeling the Earth’s rotation around the Sun, 
the universum could include a continuous set three-spatial variables 
and one time variable U = (x, y, z, t) and the behavior of the Earth’s 
orbit would be the subset of values a model predicts. The behavioral 
approach to model system is powerful as it expresses the underlying 
relations as a single set B. For a general system with elements E, a 
universum can be defined as all E permutations, U = E*. When the 
relations can be expressed as following one overall behavior, the 
system follows the definition S ⊆ E*. This is analogous to the 
definition of a formal language with alphabet A as SLangauge ⊆ A*.  
 Another way to define the limits of behavior is by possible 
versus impossible physical transformations. Constructor theory 
distinguishes all possible transformations allowed by the laws of 
physics (done by “constructors”) versus transformations that are not 
possible by the laws of physics. This differs from a Newtonian 
approach that focuses on finding one answer of the laws of motion, 
such as a specific orbit of Earth. From a constructor theory point of 
view, it is also possible that tools are constructed to alter Earth’s 
trajectory, or accomplish any transformation allowed by physics. 
When taking a behavioral approach to constructor theory, the 
universum is the space of all possible physical transformations, and 
the behavior is the subset of transformations allowed by the laws of 
physics. Specific models and other tools can then assess which 
transformations are more likely to occur in certain scenarios.   
 The universal set may be posed to contain all sets, but this 
leads to contradictions. A set X containing all sets would contain its 
own power set (all subsets of X). However, this leads to contractions 
because a set should always have a lower number of elements than 
its power set.16 Formal systems take a variety of approaches to fix 
these contradictions, such as introducing a “proper class”, a 
collection of sets that cannot be elements of other classes. The class 
of all sets would not contain itself and correct these contradictions. 
The “categories” of category theory are also classes, so one can 
study the category of all sets. Similar to the set of all sets, 
contradictions arise in considering the system of all systems.17 In a 
general system, it is often beneficial to consider a system S, elements 
E, and relations R, as different types of classes, or categories, to 
avoid self-referencing paradoxes.  

Example 2.7 
Behavioral System 

Systems can be 
defined via the 
Universum U, the 
totality of events 
prior to applying laws, 
and the Behavior B, 
the subset of these 
outcomes that are in 
a given model. 

 

SBehavioral = (U, B) 
 

U = Universum of  
possible states  
 

B = Behavior of 
model, (B ⊆ U) 

 
 
 

  
 

 
 
 
 
 Universum 

Behavior 
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Relational Elements 
 

Defining an element in a formal system is accomplished by relating  
to other elements. A single term like apple requires a system of words 
to be defined, such as “I like apple pie”. In turn, each of these words 
are defined by referencing other words. This can also be seen in the 
definitions of physics concepts, like energy, which hinges upon its 
relations to other quantities, like distance, time, and mass, which hinge 
on other terms. Number theory even defines numbers as the extension 
of a proposition, meaning that the term four only makes sense in 
statements such as, “There are four drawers.”18 While it may seem that 
elements like four, energy, or apple exist in isolation, relations to other 
elements are required to produce meaning.  

Identity itself even arises in a relation-centric process. Identity 
is defined as a binary relation that maps an element to itself x	⟶ x, 
such as {(1,1), (2,2), (3,3), …}. In the identity mapping, the pair (1, 1) 
depends on connecting only to itself (1 = 1) and not connecting to all 
others in a domain (1 ≠ 2, 1 ≠ 3, …). Even defining one element {a} 
requires the identity relation, creating the system S = ({a}, {(a, a)}). 
Essentially, in order to say anything about an element, even that it is 
equal to itself, requires a system of relations. Departing from a parts-
based view that focuses on defining isolated elements, systems science 
studies the network of relations between elements. 

Math and logic essentially studies the relations between 
things, not what things actually are. As formal systems are valid by 
virtue of form rather than content, they do not provide knowledge of 
what “x” is or should be, but rather how “x” relates to other variables, 
like x = ½y. For example, geometric ratios are defined by the relations 
between multiple distances and an object “x” is defined as length 1 by 
being half as long as another object “y” of length 2. Instead of posing 
isolated parts that exist in independence, a system-based view poses a 
system, or relations between elements, to model a given part. 

Contextual and relation-based definitions come about in 
modeling nature. In quantum physics, individual particles can only be 
measured and observed via interactions with other particles. Quantum 
particles can also be entangled, which means that measuring the state 
of one particle can instantly effect other particles.19 This means that 
the smallest pieces of matter in the universe cannot be identified in 
isolation and must be understood as a network of relations. More 
broadly, the complex physical, biological, and informational patterns 
in the world must be modeled through interdependent relations, where 
the identity and meaning of a given part arises from interaction. 

Example 2.8 
Interdependent 
Words 

A word only gains 
meaning through 
referencing other 
words, which also 
reference other 
words, with no 
objective truth.   

 
Simple = 

Easy to do or 
understand 

 
Easy = 

Without effort 
or difficulties  

 
Without = 

In the absence 
of or outside 

 
  In = … 

 
 



 

 

 Chapter 2 Formalization        27 
 
 
 

 

Relations are central in category theory, which studies how 
mathematical objects map to one another. A category consist of 
mathematical objects (sets, geometric spaces, algebraic fields, etc.) 
and the relation of morphisms (mappings written as →) that follow 
identity and composition. Categories can include other categories as 
objects and the morphisms between categories are called functors, 
which also follow identity and composition rules. Morphisms can 
be further extrapolated into natural transformations, which are 
structure preserving mappings between two functors, as shown in 
the example in Figure 2-13 (identities and labels omitted). Category 
theory provides a very general way to study underlying relations 
within and between mathematical structures.  
 

 
 

Figure 2-13 Categories and Morphisms 
 
Relation-centric definitions arises in the Yoneda lemma, a 

fundamental result in category theory. The Yoneda lemma states 
that an object’s map can be fully defined by how other arbitrary 
objects relate to it. This can be illustrated by a sphere. Objects on a 
plane, like a line, circle, and triangle can be mapped to the sphere, 
but will be curved to preserve their structure, as shown in Figure 2-
14. Following the Yoneda lemma, the sphere’s map can be fully 
acquired by knowing how arbitrary objects map to it, even without 
knowledge of the sphere itself. More formally, the Yoneda lemma 
can be written as FA= Nat(hA , F), where FA is a functor to the target 
object and is equal to Nat(hA , F), the structure preserving natural 
transformation from arbitrary objects to the target object.20  The 
result, that a map to an object is fully definable just by the relations 
to other objects, has deep philosophical implications about identity. 
 
 

 
 

Figure 2-14 Yoneda Lemma 

Object’s 
 map     

 

Arbitrary 
 mappings 
to object 

Functors: 

Natural 
Transformation 

Categories: 

Example 2.9 
Category Theory 

A category is a system 
with the elements of 
mathematical objects 
(e.g. sets, fields, other 
categories,  ...) and 
maping relations, 
called morphisms 
(→), that include 
identity (a → a) and 
composition (if a → b 
& b → c, then a → c), 
like the graph below. 
Category theory can 
embed mathematical 
structures into graphs 
and map from one 
model to another. 
 

     
 

SCategory = (E, R) 
 

E = Objects  
 

R = Morphisms, must 
include identity 
and composition 

 
 

a 
 

b 
 

c 
 

= 
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Models and Metalogic 
 

A model, which is a set of statements in which a given formal system 
is interpreted as correct, can be studied in its own right and has distinct 
properties. In studying models, it is helpful to clarify the difference 
between the object language and the metalanguage. For example, if A 
and B are sentences of an object language SLanguage, a metalanguage 
references the term SLanguage to study properties about the object 
language itself. The object language studies how to use a given formal 
system’s symbols and operators, while the metalanguage is used to 
study the structure of the formal system. One could work within the 
rules of a mathematical system, like arithmetic for example, without 
ever considering the metatheory properties of the model.  
 
				SLanguage  = {Sentences A, B, C, …}        SMetalanguage = Properties(SLanguage)           

 

 
    Object language (Within Model)                  Metalanguage (About Model)                  

       

Figure 2-15  Language vs. Metalanguage 
 
Metalanguages provide clarification for defining truth. Alfred 

Tarski’s semantic theory of truth, introduced in 1933, states that the 
object language “p” is true if in a metalanguage p is true.21  For 
example, “rain is wet” is true in an object language if rain is wet is 
posed to be true in a metalanguage. Essentially, a models internal truth 
requires that it is externally assumed to be true. Tarski’s undefinability 
theorem states that truth cannot be defined within a formal system (at 
least first-order logic) and requires a stronger metalanguage.22 For 
example, arithmetic truth cannot be defined with arithmetic.  

Mathematics can illustrate the difference between an object 
language and metatheory. The object language of math studies the 
results generated from manipulating rules, like in 2 = 1 + 1. On the 
other hand, metamathematics studies what can be known about the 
model itself, such as if a model is sound and does not lead to false 
conclusions, like x = 1 and x ≠ 1. Properties of models include being 
sound, consistent, and complete, which are defined in Figure 2-16.  
 
 

Sound A proof system cannot lead to false conclusions 

Consistent A proof system proves no contradiction 

Complete A proof system can lead to any true conclusion 
 

 Figure 2-16  Properties of Models   

Example 2.10 
Embedded 
Metalanguage 

Object languages 
can also embedd an 
metalanguage. The 
English language 
has the words noun, 
verb and word, 
which describe 
concepts about the 
English Language. 
Gödel numbers, 
which assign 
mathematical 
statements to 
numbers, are 
another example of 
an embedded 
metalanguage. 
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 Not all formal systems are fully sound, consistent, and 
complete—even if they may appear so at first. For example, there are 
contradictions in the basic axioms of set theory, called “naïve set 
theory”. Cantor’s paradox revealed that the set of all sets is not well-
defined because it would also contain itself, leading to contradictions. 
Also, Russell’s paradox shows that the set of all sets that are not 
members of themselves leads to contractions. Systems like Zermelo-
Fraenkel set theory and Type Theory introduce new axioms to correct 
these contradictions and create a consistent form of set theory. 

Even if a proof system is free of false conclusions (sound) and 
free of contradictions (consistent), this does not mean that the system 
can prove any true statement (complete). While, zero-order logic, 
called propositional logic, is complete and all statements always have 
provable yes or no answers, first-order logic, which has quantifiers for 
variables like for all x, is incomplete. This means there are true 
statements that are impossible to solve.  

In the early 1900s, logicians were working to classify 
mathematics into a complete system where each proposition would 
have a provable true or false result. To the dismay of these logicians, 
Gödel’s 1931 incompleteness theorem, proved that no math system 
powerful enough for arithmetic (or first-order logic) can prove itself 
complete. 23  This discovery re-affirmed that math contains true 
statements that are impossible to solve, even though math is sound and 
consistent. For example, the continuum hypothesis, which is a 
problem in set theory that asks if there is a set size between the size of 
the integers and continuous real number line, has been proven to be 
undecidable from initial axioms.24 

A commonly explored metatheory that connects to natural 
sciences is metaphysics, which works to describe first principles that 
cannot be tested in physics itself, including concepts such as 
substance, cause, time, and space. While physics can explain how 
measurable quantities like mass, time, and speed relate to one another, 
physics does not explain why fundamental concepts exist in the first 
place. Metaphysics, on the other hand, explores questions that are 
assumed prior to the possibility of empirical testing.   

Throughout history, many different metaphysical models of 
reality have been posed. Philosophers like Plato and Hegel posed 
extravagant metaphysical systems. However, there are usually 
inconsistencies or inefficiencies in applying one given metaphysical 
model to describe all real-world situations. While these models can 
have degrees of insightfulness, no metaphysical system has ever been 
agreed upon, nor can ever be proven as, the true model of reality. 
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In the 19th century, philosophers largely transitioned away 
from metaphysical theories to developing analytic philosophy, which 
studies how questions can be proven in a given logical model. This 
revolution, called the linguistic turn, reoriented the focus of 
philosophy to discuss the process associated with logical truth for a 
given formal system and denied the ability to know if reality truly 
follows a model. The linguistic turn has shaped modern philosophy to 
study the process by which any formal model can be analyzed. 

Systems theory takes a similar approach to analytical 
philosophy, as it does not search for one ultimate model of nature, but 
instead clarifies the meaning of truth in any possible theoretical system 
that can be posed. Systems theory does not have an external definition 
of truth, but rather each system has its own truth, when assuming the 
axioms are true in a metalanguage. Science then uses evidence-based 
methods to correlate formal theories with real-world phenomena 
within certain degrees of accuracy. 

While analytical philosophy has dropped the hunt for the 
single ultimate model of reality, scientists often focus on predicting 
nature from the bottom-up. For example, biologists often work to 
explain life solely through the underlying chemistry. While the unity 
of science takes the view that all the rules of nature are compatible 
with one another (for example, that biology does not violate physical 
behaviors of matter), complex systems can have irreducible higher-
level patterns that are impossible to efficiently predict, showing the 
limitation of a purely bottom-up approach. Higher-level theories, like 
chemistry, biology, and so forth, are often required to create useful 
models of nature, rather than just using physics for everything.  

Systems theory has different goals compared to a parts-based 
metaphysics. Instead of seeking a singular and fixed model that 
perfectly predicts all scenarios in the universe, systems theory works 
to provide simple expressions to describe any logical model. Systems 
theory does not pose one fixed, unequivocally correct, model of 
nature, even if the scientific models of nature strive to be fully 
consistent. Systems theory instead takes a metalogic approach to 
consider how any kind of model can be used. Furthermore, while the 
success of a parts-based and reductionist approach is determined by 
completeness and predictability, a successful systems theory must 
include the possibility for models that are incomplete and irreducible. 
Other differences between the parts-based and systems approach are 
summarized in Figure 2-17. Systems theory refocuses the search for a 
single fixed model of nature toward how models themselves work—
simple to complex. 
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Type: Parts-Based Metaphysics Systems-Based Metalogic 

Goal: Find one model that can explain all 
the patterns in the universe 

Find what applies to all systems used to 
model any given pattern 

Explanation 
Power: 
 

Explain all scenarios in the universe 
in a single reducible model 

Explain all systems of representation that 
can be reducible or irreducible   

General 
Methods: 

Model is complete, consistent, and 
all questions are decidable 

Models account for simple to complex 
systems, which can be undecidable   

Measure of 
Failures: 
 

Fails if it produces at least one 
inconsistency or paradox 

Fails if it is does include any given model 
that can be proposed  

Form of 
Success: 

Find the simplest list of entities and 
relations for the entire universe 

Identify generally applied and unifying 
principles of any given system 

 

Figure 2-17  Reductionist vs. Systems Approach  
 

Summary 
 

This chapter provided foundational definitions for a general system. 
Set theory can be used to define an arbitrary system as a collection of 
elements and relations between those elements. These relations can 
represent logical operators, like if-then statements, as well as 
mathematical operations, like addition and subtraction. Any formal 
system, from math, logic, graphs, and automata, can be created by 
specifying elements and relations. Within a system, elements do not 
possess isolated identities, but are rather defined by the interdependent 
relations to other elements. As a meta-discipline, systems theory 
provides insight into what can be known about formal models, such 
as the possibility for incompleteness. In contrast to the traditional 
parts-based and fully reducible approach, systems theory presents an 
open-ended way to approach nature’s patterns and knowledge that 
includes complexity, incompleteness, and irreducibility.  
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Chapter 3 Emergence 
 

 
 

 
Emergent models provide a useful way to describe arising properties 
in systems. More formally, a higher-level emergent model is mapped 
from limiting the domain (or universal set) of behaviors covered by a 
lower-level theory. One way to limit a domain is by coarse-graining, 
which only considers collective properties. Temperature is an example 
of a coarse-grained emergent model as it only considers the average 
energy without knowing each particle’s kinetic energy. Temperature 
can then be related to other emergent measures like pressure, and 
entropy. Emergent models propose numerous measures to analyze the 
world, relevant for particular domains of science.  
 

 
limit(SLower) → SHigher 

 

Figure 3-1 Equation of Emergent Theories 
 

Emergence plays a critical role in science and connecting 
lower-level models, like physics, to higher-level models, like biology. 
A critical insight is that emergent models provide consistent and 
parallel descriptions of lower-level models, so both are valid and 
meaningful. This means that higher-level models should never 
introduce something fundamentally new, even if different or 
surprising. However, the lower-level rules of complex systems cannot 
always be efficiently mapped to higher-level results. So, while the 
domain of biology may be a subset of physics, this does not mean 
physics can efficiently predict biological patterns. 

Example 3.1  
Flock of Birds 

Flocking patterns 
can be studied 
with emergent, 
coarse-grained 
models that only 
considers the  
behaviors of large 
collections. 
  

Example 3.2 
Shortest Boundary  

Nodes create an 
emergent shortest 
boundary length. 
The boundary limit 
contains all the 
nodes, but does not 
specify each node. 
 

 
 

limit: 
shortest 
boundary 
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Emergent Models 
 

The center of mass is an example of an emergent model. The lower-
level method to model the gravitational force at a point from a set of 
particles is to consider each mass and distance, (m1, r1), (m2, r2), … . 
However, a more simple way to do this calculation is to sum S  all 
the particles to create a total mass Mcm, and to find the distance from 
the center of mass Rcm, following the formula in Figure 3-2. From 
here, the total gravitational force outside the boundary only requires 
(Mcm, Rcm) rather than all the particles. In this example, both the 
lower- and higher-level models have the same type of measures of 
mass and distance. Additionally, the center of mass limits the details 
of internal regions so is not valid in all cases, but is still very useful.   

 

 

 
             Lower-level               Higher-level       

 

                       Figure 3-2 Center of Mass Model 
 

Thermodynamics is another emergent model arising from 
the collective behavior of many particles of mass (m), position (r), 
and velocity (v). Thermodynamics introduces new measures like 
pressure (P), temperature (T), and density (D) that relate to one 
another in equations such as P µ T · D for an ideal gas. These 
measures, and others like entropy, provide an efficient way to model 
system-wide states of large collections without information about 
each particle. Studying thermodynamic systems, which was called 
“the working substance” by early pioneer Sadi Carnot in the 1800s 
in relating entropy to the useful output of work, was a critical step 
in developing the notion of a “system” in science.25  

 

 

 
                                             Lower-level                Higher-level  

 

 Figure 3-3 Thermodynamic System  

Particles: 
(m1, r1) 
(m2, r2) 
(m3, r3) 

… 
 
 
 

Center of Mass: 
(Mcm, Rcm) 
Mcm = S mx 

Rcm = S mx rx / Mcm 
 
 
 

Particles: 
(m1, r1, v1) 
(m2, r2, v1) 
(m3, r3, v1) 

… 
 
 
 

Thermodynamic System: 
(Temperature, Pressure, Density) 
T = average kinetic energy  
P = force against a barrier  
D = # of particles / volume 
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Emergence arises in the different phases of matter, such as 
solids, liquids, and gases. The higher-level measure of phases 
considers the structural patterns and behaviors of many lower-level 
particles, as shown in Figure 3-4. Matter in a solid state, like ice, resists 
forces and maintains a volume. Matter in a liquid state, like water, is 
not rigid, but still maintains a given volume. Matter in the gas phase, 
like steam, will spread apart and not maintain a given volume. The 
type of phase can lead to vastly different macro-level behaviors and 
phases can change with sharp transitions at specific temperatures. 
Analogs to phase changes occur in other complex systems, such as 
models of animal flocking and swarming patterns.26  

 

 
 
 
 
 

           Solid           Liquid                Gas 
 

 

   Lower-level Particles                                  Higher-level Phases 
 

Figure 3-4 Phase Transitions 
 
Economic models provide another interesting case of 

emergence. At the lower-level, economics considers individual 
monetary transactions for goods and services. Many individual 
actions can then be summed up to create system-wide patterns, such 
as total supply and total demand. A variety of collective patterns 
emerge in economic systems as independent agents attempt to 
optimize transactions, such as equilibrium points, where supply and 
demand equalize around a given price. Economic systems can also 
exist in out-of-equillbrium states and exhibit complex behavior that 
is not deterministic, predictable, and mechanistic, but rather process 
dependent, adaptive, and always evolving.27 

 

 

                                                                     

            Lower-level                    Higher-level  
 

Figure 3-5 Economic Systems 
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Levels of Theories 
 

Higher-level theories have a smaller domain, or set of possible 
scenarios, compared to lower-level theories.28 For example, the 
property of temperature is not valid with a small number of 
particles, while the lower-level particle-based model is valid. 
Another example is that the lower-level model of relativity 
includes scenarios near the speed of light, while the emergent 
model of Newtonian mechanics does not. 29  In general, the 
domain of a higher-level model is a subset, or part of, the lower-
level domain, as shown in Figure 3-6.  

Natural sciences are largely categorized as nested 
emergent levels. Physics strives to model energy, matter, and 
spacetime at the lowest fundamental level. Chemistry provides 
higher-level models of the world, limited to matter above the 
molecular scale. Biology is limited to the subset of chemical 
systems with living properties. Further higher-level models can 
be defined, like psychology and sociology. While higher-level 
theories, like biology, may propose surprising rules that are not 
efficiently predictable by lower-level theories, like physics, 
these models should, in principle, be compatible and consistent.  

Lower-level and higher-level models of the same 
system should always agree on the underlying behavior when 
both can be applied. For example, thermodynamic models 
should produce the same results as modeling individual particles. 
This equivalence can be shown with a mapping process →, that 
transforms inputs to outputs. Mapping how particles change 
over time, then deriving the state of the gas (L0 → Lt → Ht) 
should be equivalent to first mapping the particles to gas, then 
modeling how the gas changes over time (L0 → H0 → Ht), as 
shown in Figure 3-8.  Both levels are parallel descriptions of the 
same behavior.  

 

       

 
 

 

Figure 3-8 Equivalent Mappings 

Figure 3-7 Domains 
of Natural Sciences 

Domain  

Physics 

Biology 

Chemistry 

Higher-level 
 

Lower-level 
 

Figure 3-6 Domains          
of Emergent Models 

Domain  

 
 

L0 → Lt → Ht = L0 → H0 → Ht 

Ti
m

e 

Lower-level: Particles 

L0 

Lt 

 H0 

  Ht 

Higher-level: Gas 



 

 

 Chapter 3 Emergence        37 
 
 
 

 

While some higher-level models can be exactly derived, 
many emergent mappings do not have efficient algorithms. For 
example, the properties of gases can be exactly derived from many 
random particles, but the computation halting problem has 
irreducible higher-level properties that cannot be predicted with 
efficient algorithms. Computers can support modeling emergent 
properties, but often require unfeasible resources to find solutions 
without quick algorithms. Also, the mappings between theories 
may only be partially solvable (e.g. only some of chemistry is 
predictable by physics) or have no known solutions (e.g. how 
cognitive experiences and consciousness arises), even if they are 
expected to describe the same behavior.  

Higher-level theories can be, and are often, discovered 
without knowledge of a lower-level model. For example, 
temperature and pressure were understood before the discovery of 
the lower-level theory of particles. Over history, many higher-
level theories have been subsequently mapped to broader lower-
level theories, like linking inheritance trends to DNA structures.30 
However, many higher-level models exist independently and may 
never be derivable from lower-levels. 

Emergent models can have a variety of connections 
between different levels of theories. The trivial case is that one 
lower-level theory leads to one higher-level theory. One lower-
level theory can also lead to multiple higher-level theories. For 
example, limiting the lower-level electromagnetic theory can lead 
to two separate theories of electricity and magnetism. Multiple 
lower-level theories can lead to a single higher-level theory. For 
example, both quantum mechanics and relativity simplify into 
classical mechanics, but these two theories are distinct and not 
consistent with each one another. 31  Science works to create 
consistent and comprehensive theories of nature, but there are still 
large gaps and complexity hurdles for connecting emergent levels. 

 
 

 
 
 
 
 

                    
 

  One-to One                     One-To-Many                        Many-To-One                                                               
 
 

       Figure 3-9  Emergent Theory Connections  
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Example 3.3  
Difficult Mappings 

Not all mappings from 
lower-level models to 
higher-level models are 
efficient or fully solved. 
 
 limit(SL) 		Efficient 				%⎯⎯⎯⎯⎯⎯' SH 

 

(e.g. center of mass) 
 

 

 limit(SL) 
Nonefficient
%⎯⎯⎯⎯⎯⎯' SH 

 

(e.g. halting problem) 
 
 

 limit(SL) 
Some Solved		%⎯⎯⎯⎯⎯⎯⎯' SH 

 

(e.g. predicting protein 
folding structures) 

 
 

 limit(SL) 	Unknown	 		%⎯⎯⎯⎯⎯⎯' SH 
 

(e.g. cognition arising  
in biological systems) 
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Limiting Domains 
 

Emergent limits can be considered from a behavioral approach, 
which defines a system as S = (U, B). The domain is a universum 
U of possible outcomes and the behavior B is the subset of 
outcomes predicted by a model, following B ⊆	 	U. Emergent 
models can describe limits of this unified behavior. The behavior 
described by a higher-level model is a subset of the behavior 
described by the lower-level within the universal behavior, 
following BHigher ⊂		BLower ⊆  B. Subsets of behavior can also be 
assigned respective domains, BHigher ⊆		UHigher and BLower ⊆		ULower, 
which are subsets of one another, following UHigher ⊂		ULower ⊆  U. 

An universum of values can be limited in many ways to 
study a subset of behavior, revolving around lowering the degrees 
of freedoms. One limit is to join “È” sets A and B and only consider 
their intersections A È B, which reduces the sets under study to one. 
The variables x and y can be limited by extending the x variable to 
infinity to establish yx → ∞. A universum of x, y, and z values can 
also be limited to x and y with a fixed z value, like z = 0. A set can 
be limited to cover a smaller range of values, such as {1, 2, 3} → 
{1, 2}, which can be thought of as limiting the range of velocities 
or energies considered.  While not all limits have a smaller output, 
the limits in emergence reduce the size of the output, called the 
codomain, compared to the input, or domain. Additionally, the 
limit’s arrow goes left to right to an output codomain, which is 
called a colimit in category theory. In emergent limits, detail is lost 
in the colimit and there are no maps backwards to the initial domain.   

 

 

 
 

Figure 3-10 Limiting Domains 
 

Example 3.4 
Simplifying Equations 

Emergent theories can 
provide ways to model 
with fewer degrees of 
freedom. Chemical 
reactions formulas, like 
2H2+O2 → 2(H2O) do 
not include subatomic 
states, (e.g. each 
proton consist of 
quarks) while still 
effectively predicting 
molecular processes. 
 

Lower-Level Theory 
{Many quantum states} 

↓ 
Higher-Level Theory 

{Fewer chemical states} 
 

 

1<3  
2<3 

 

 A  
            AÈ B 
B 

  x  
            yx → ∞ 
 y 

x  
y 
z 

xz=0  
yz=0 

 

1  
2 
3 

limit limit 

limit limit 
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Emergence can be more precisely defined by introducing an 
interpretation map I, which transforms a system’s behaviors into 
interpreted results following I: S → SI. The interpretation of a system, 
like I(S), is a model and another type of system SModel =(U, σ, I) that 
interprets the underlying domain, like SBehavioral =(U, B). Emergence 
can then be defined as an interpretation that can only be mapped one 
way for a colimit following, limit(I(S)) → I(limit(S)). 32   To 
understand this equation, it is useful to define a lower-level model as 
interpreting the system, SLower  = I(S), and a higher-level model as 
interpreting the system with a limit imposed, SHigher  = I(limit(S)). The 
emergence relation of limit(I(S)) → I(limit(S)) can then be written as 
limit(SLower) → SHigher.  An essential aspect of this definition of 
emergence is that the higher-level and lower-level models are 
different interpretations of the same system S. The behavior of the 
underlying system is always the same S = (U, B), but certain 
interpretations under limits give the effect of emergent models.  
 
 

 
 

Figure 3-11 Interpretations and Emergent Limits 
 
Emergence occurs when a limit is not preserved for a given 

interpretation and can only be mapped in one direction, following 
limit(SLower) → SHigher. Emergence models cannot be mapped in 
reverse, which entails the limit is not isomorphic and is unequal 
limit(SLower) ≠ SHigher. For example, the limit of the set {x, y, z} can be 
mapped to {x, y} as another model of the underlying behavior, but is 
unequal as {x, y, z} ≠ {x, y}. In emergent models, the interpretation 
mappings must have a lower amount of detail than the full behavior.  
If the higher-level system loses no detail and can fully reconstruct 
the lower-level model, then the models are not emergent, but rather 
equivalent to an isomorphism, following limit(SLower) ↔ SHigher and 
limit(SLower) =  SHigher. One way equivalent models can occur is if the 
interpretation does not lose any detail about the system’s behavior, 
which entails both sides will be equal to each other in the equation 
limit(I(S)) = I(limit(S)).  

 

Emergence: 
limit(I(S)) → I(limit(S)) 

 

S  limit(S) 

I(S) 
 

I(limit(S)) 
 

I( ) I( ) 

limit( ) 

limit( ) 

Example 3.5 
Emergent Domains 

Emergent models 
lose detail, are 
unequal, and 
reduce the domain 
over a given limit.  
Equivalent models 
lose no detail, are 
equal, and cover 
the same domain.  

 

 

 
 

 
 

Equivalent 

Domain 

SHigher= 

limit(SLower) 

Domain 

Emergent 
 

SHigher ≠ 

limit(SLower) 
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Emergent Elements 
 

Emergent theories often propose new measures, such as temperature, 
solidity, and homeostasis, to describe a system in completely different 
terms than lower-level theories. While a parts-based view may 
understand higher-level properties as just side-effects of a lower-level, 
a systems-based view recognizes emergent patterns as valid models in 
their own right. New measures that efficiently model natural systems 
without lower-level information are extremely useful. Additionally, 
giving levels more or less importance does not make sense if they are 
parallel descriptions of one reality, subject to different limits.  

Emergence models can be classified by different types of 
elements. Homeostructural (“same” structure) emergence occurs 
when the elements in lower-level and higher-level models have the 
same type of measure, written type(ELower) = type(ELower). The center 
of mass is a homeostructural theory because the same elements of 
position and mass are used in both the lower-level and higher-level 
model. 33  Heterostructural (“different” structure) theories have 
different types of elements type(ELower) ≠ type(ELower). For example, 
entropy and temperature use different measures than the lower-level 
theory of particles. Heterostructural emergent theories show how new 
descriptions that are wholly different can arise, like tensile strength 
and viscosity, when limiting to subsets of the domains.  
 

type(ELower) = type(EHigher) 
Homeostructural   

type(ELower) ≠ type(EHigher) 
Heterostructural  

 
 

Figure 3-12  Emergent Element Types 

 

While emergent measures can be different than lower-levels 
measures, they are not fundamentally new. Following the view that 
lower-level and higher-level models describe the same behavior 
means there should never be so-called “strong emergence”, where 
emergent theories introduce something incompatible with lower-
levels. Strong emergence is often referenced when asking if life or 
consciousness requires something else beyond the physical universe. 
However, following the notion that science identifies ubiquitous 
patterns of reality, rules of the whole universe, like physics, should 
always be compatible with rules of subsystems of the universe, like 
living and information systems. For example, computational circuits 
can present the emergent property of a software, but this does not 
require something else beyond the physics of the hardware. 
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The elements of emergent models can map to one another 
in a variety of ways. In coarse-grained theories, many lower-level 
elements map to a single higher-level element. Temperature and 
center of mass uses coarse-graining to define one macrostate. In 
fine-grained theories, each lower-level element maps to one higher-
level element. For example, each particle of mass in the lower-level 
theory of special relativity maps to one particle of mass in classical 
mechanics. Another type is a one-to-many mapping, which is here 
called “hidden-order” as it hides details about the unifying structure. 
For example, there is only one lower-level quantum field for each 
particle type, but many separate higher-level particles. 34 
Importantly, regardless of a given element’s scope, there is always 
an underlying limit where the output domain’s degrees of freedom 
is smaller than the input domain. 

 

 
 
 

 
 

   
 

      Many-to-One:                     One-to-One:                 One-to-Many: 
   Coarse-Grained           Fine-Grained                Hidden-Order 

 

Figure 3-13  Emergent Element Mappings 

 

 A common type of emergence are multiple coarse-grained 
emergent theories that nest into one another. An example of this is 
in Figure 3-14, which shows three coarse-grained emergent theories. 
The lowest level S1 is coarse-grained to S2, which is coarse-grained 
to S3, each with their own set of elements. Nesting elements in 
emerging theories happen frequently in the fields of natural 
sciences. For example, quarks compose atoms, atoms compose 
chemicals, chemicals compose organisms, and so forth.  
 

 
 
 
 
 
 
           
           S1                                          S2                             S3 

 

 Figure 3-14  Nesting Emergent Elements  

EL1 

EL2 

EL3 

y 

EL1 

EL2 

EL3 

 

 

EH1 

 

 

EH1 

EH2 

EH3 

 

 
EL1 

 

EH1 

EH2 

EH3 

 

E2.1 

E2.2 
E3.1 

E1.1 
E1.2 
E1.3  
E1.4 

 
E1.2 

 

 

2 

E1.1 E1.2 E1.3 E1.4 

E2.1 E2.2 

E3.1 

Example 3.6  
Hidden-Order 

Lower-level elements 
with hidden-order 
unifies many higher-
level elements, such 
as the circle, square, 
and triangle all arising 
as shadows of a single 
3-D object. Hidden-
order emergence 
occurs in symmetry 
breaking, a physical 
phenomenon where 
lower-level states are 
symmetrical and 
unified, but break this 
symmetry to distinct 
higher-level states.  
 
 
 
 
 
 
 

 
 

 
 

Nested Element Composition 
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Generative Effects 
 

A classic example of emergence is when a model of the whole is 
different than the sum of its parts. These generative emergent 
effects can be illustrated by a join “È” relation, which joins two 
systems, overlapping the sets of behavior. The joined system (e.g. 
S2 È S1) only contains the subsystems (e.g. S1, S2) and no other 
elements or relations. When defining a system as S = ((S1, S2), È), 
which contains the elements of two subsystems (S1, S2) and the join 
operator; generative effects occur when I(S1) È  I(S2) ≠  I(S1È S2).35 
This formula can be found by applying a joining È  limit in the 
inequality of limit(I(S)) ≠ I(limit(S)). While the model of the 
whole may not equal joining the model of the parts, the whole is 
always mapped from the parts, following the emergence equation 
limit(I(S)) →  I(limit(S)), or I(S1) È  I(S2) →  I(S1È S2). Generative 
emergence is essentially the definition of nonlinearly but pertains 
to models themselves rather than particular functions. In 
equivalent and linear models, the joined parts is equal and 
isomorphic to the whole, following I(S1) È  I(S2) =  I(S1È S2).  

 

 
I(S1) È  I(S2)   =   I(S1È S2)                 I(S1) È  I(S2)  ≠   I(S1È S2) 

     I(S1) È  I(S2)  ↔  I(S1È S2)                  I(S1) È  I(S2) → I(S1È S2) 
             Equivalent, Linear      Emergent, Nonlinear  

 
Figure 3-15 Equivalent and Emergent Models 

 
Generative emergent effects can be seen in large language 

models used in artificial intelligence software. This kind of 
software uses a large amount of interconnected parameters to 
transform inputs, like text questions, into specific outputs, like 
text responses. The parameters of the artificial network can be 
thought of as smaller interpretational models that work together 
for the model’s total effect. Interestingly, many of the effects of 
the large language models are not predictable from linearly 
scaling the smaller models and parameters.36 These generative 
effects are similar to sudden phase transitions. After adding many 
parameters, the whole system reaches a tipping point, or phase 
transition, where it becomes much more accurate at solving 
complex problems. Even though the whole model is mapped from 
joining the parts, the total model output and ability to solve 
problems does not equal linearly joining the models of the parts.   

Example 3.7 
Nonlinear Effects 

Models, like summing 
the mass M() of parts, 
are linear and add in 
superposition, while 
compressive strength 
C() does not equal the 
sum of the parts and 
depends on the 
interrelated structure. 

 
Equivalent, Linear 

(Mass of parts adding) 
M(a) + M(b) = M(a+b) 

 
 

Emergent, Nonlinear 
(Compressive strength) 
C(a) + C(b) ≠ C(a+b) 

 

 
 

≠ 
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 A critical feature that allows generative effects to come 
about is interconnected subsystems. This can be shown by taking 
an interpretation I where the details of the behavior’s states are 
forgotten about and only the number of total states are counted. 
If the states of two systems are S1 = {a, b} and S2 = {c, d}, the 
union equals S1È S2 = {a, b, c, d}. This mapping is not emergent 
and adds together in a linear fashion, I(S1) È  I(S2) =  I(S1È S2), 
as the number of enumerated states can be put in a one-to-one 
correspondence of equal length, 4 = 4. In contrast to the first case, 
when S1 = {a, b} and S2 = {b, c} the union shares the b state and 
equals S1È S2 = {a, b, c}. Due to the fact that the interpretation 
mapping I removes the state’s detail and only counts an arbitrary 
number of states, the model is emergent and the interpretation of 
the whole does not equal joining the interpretations of the parts, 
I(S1) È  I(S2) ≠  I(S1È S2), and 4 ≠ 3.  
 

 

       I: Forget details of state and count sets arbitrarily (1, 2, 3,  …) 

                 S1                   S2                               S1                 S2 
             

             a      b             c     d                              a        b         c                          
        
 

Equivalent, Linear                      Emergent, Nonlinear                           
          I(S1) È  I(S2) = I(S1È S2)                 I(S1) È  I(S2) ≠ I(S1È S2) 
    I{a, b} È  I{c, d} = I{a, b, c, d}        I{a, b} È  I{b, c} ≠ I{a, b, c}                          
                      2 È  2 = 4                                            2 È  2 ≠ 3                            
                             4 = 4                                                 4 ≠ 3                          

 
Figure 3-16 Emergent Effects in Joining Systems 

 
The necessity for two subsystems must be interlinked for 

generative emergence to arise is apparent in adding entropy. If the 
states of the subsystems are not related, the entropy of the whole 
system equals the sum of the entropy of the subsystems. However, 
if the states of the subsystems mutually depend on one another, 
then the entropy of the whole may not equal the sum of the parts. 
When subsystems share a set of behaviors, there exist the 
possibility to describe the joined behavior in a more efficient 
fashion. This creates the effect where joined model covers a 
smaller domain of behavior, and is unequal, to the model of the 
parts. Joined higher-level emergent models never covers a larger 
domain of behavior than lower-level model, and if the domains 
are equal in size, the models are equivalent and linear. 

Example 3.8 
Interacting Subsystems 

Joining È  systems 
combines unique 
elements and relations. 
When subsystems are 
not related, models of 
the joined whole are 
linear and equivalent.   
 
S1 =    a                 b 
 
S2 =    c                 d 

 
S1 È  S2  = 

 

           a                 b 
 

           c                 d 
 

 
When subsystems are 
interelated, it is possible 
for the model of the 
whole to be different 
than joining the parts.   

 
S1 =    a                 b 
 
S2 =    b                 c 
 
S3 =    c                 a 

 
S1 È  S2 È  S3 = 
 
            a                 b 
 
           
                      c 
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Irreducible Mappings  
  

A critical dimension of emergence is that some limits are irreducible, 
meaning there is no finite algorithm to complete the mapping over a 
certain number of steps, leaving questions about the higher-level 
measures unanswerable even when the lower-level rules are known. 
For example, consider that a lower-level system SLower is a given set of 
initial rules for a computer that may or may not halt, the limit is to 
extend these rules to infinite number of steps over time (t → ∞), and 
the higher-level system SHigher is if the computer program halts or not. 
While some programs may halt, other programs would be running 
infinitely long and in general, this emergent property would not be 
reducible to a finite number of steps. It is important to distinguish 
that this irreducibility is not about the parts being inconsistent with 
the wholes, but rather about the inability to reduce a decision 
problem. Higher-level wholes are always, in principle, constructed by 
and mapped from lower-level parts. However, not every mapping 
algorithm is reducible to an output or can be efficiently solved. 
 
 
  limit(SLower) 		Finite Steps 			%⎯⎯⎯⎯⎯⎯⎯⎯' SHigher               limit(SLower) 

Infinite Steps  
%⎯⎯⎯⎯⎯⎯⎯' SHigher 

                      

          Reducible Emergence                   Irreducible Emergence     
 

 

Figure 3-17 Reducibility and Irreducibility  
 

Even short sets of lower-level rules can create irreducible 
higher-level patterns. For example, the elementary cellular automata 
program outputs rows of black and white cells, the color of each new 
cell determined by the colors of the three neighboring cells in the 
higher row.37 These patterns fall into different classes, some of which 
are highly complex. Class 1 rapidly converges to a uniform state and 
Class 2 converges to a repeating state, making them easy to predict. 
However, Class 3 is chaotic and Class 4 forms complex structures.38 
 

          
            Class 1: Uniform          Class 2: Repeating            Class 3: Chaotic            Class 4: Complex      

Figure 3-18 Cellular Automata Classes 



 

 

 Chapter 3 Emergence        45 
 
 
 

 

Many properties of cellular automata are irreducible, 
such as if the program will halt or how local patterns will 
evolve. These irreducible properties have no efficient 
algorithms to achieve precise results. Simulations need to be 
performed, potentially indefinitely, to test higher-level patterns 
generated from even simple sets of rules. The evolution of the 
Class 4 pattern Rule 110 displays other emergent properties, 
including the presence of “gliders”, localized patterns that 
move diagonally across the grid. Additionally, Rule 110 can 
simulate an arbitrary computational process, which is a 
powerful and open-ended emergent property.39   

The irreducible patterns in automata can even contain 
self-organization and self-replication. The Game of Life 
version of cellular automata, introduced by John Conway in the 
1970s, showed how complex, self-reproducing structures can 
be formed through simple rules based on the eight neighboring 
cells of a 2-D grid (up, down, left, right, and diagonals).40 By 
repeating simple rules the automata can create repeating and 
organized structures, some of which are in Figure 3-19. John 
von Neumann built upon these ideas and showed how it is 
possible to create self-reproducing cellular automata structures 
that encode a strand of information, analogous to DNA, to 
reproduce patterns. These simple starting rules can generate 
emergent behaviors, like organization and self-replication, 
under the limit of many algorithmic procedures.  

Some emergent patterns can be identified with brute-
force solving, but this quickly becomes infeasible with even 
small collections. For example, consider assessing a collective 
property on a 10 by 10 black or white grid that needs to be 
tested individually with no quick algorithm. A brute-force 
method would require analyzing 2100 configurations, some of 
which are shown in Figure 3-20. This is a truly infeasible scale 
to calculate. Even if each configuration took one billionth of a 
second to compute, the calculation would take 100 trillion 
years. Many emergent states are near impossible to solve by 
brute-force. Even the snowflake is subject to this 
phenomenon—the orientations of a water molecules are simple 
to count in isolation, but a collection of water molecules in a 
snowflake has an immense size of possible orientations and a 
near zero probability of ever being duplicated in the span of the 
universe. Small collections of component rules can result in 
vast numbers of emergent possible outcomes, creating an 
irreducible myriad of unique outcomes.  

Example 3.9 Rule 110 

The Rule 110 cellular 
automata is a Class 4 
pattern that can also 
simulate a computer.  

 

 
Figure 3-20 Game of Life 

Cellular Automata 
 

Moving structure 

Repeating structure  

1. A live cell with 2 or 3 
live neighbors lives. 

2. A dead cell with 3 live 
neighbors becomes alive 

3. All other live cells die 
and dead cells stay dead. 

 

2100 Possible States 
 Figure 3-19         

Brute-force Test 
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Multilevel Factors 
 

A system’s behavior can be simultaneously modeled by the lower-
level effects to the higher-level collections, called bottom-up 
factors, and modeled by the higher-level effects to the lower-level 
parts, called top-down factors. For example, the lower-level rules 
of DNA produce the higher-level rules of proteins through 
bottom-up factors. At the same time, proteins can influence which 
portions of DNA is expressed by top-down factors. A bottom-up 
approach can model certain DNA mechanisms very well, but 
other long-range and long-term actions are better modeled via a 
top-down system of genetic interaction networks.41  

Another example of self-hierarchy is the in the interaction 
of the mind and body. The body, brain, and neural networks create 
the upward, or bottom-up, factors constructing the basis for the 
emergent property of mental states. Different mental states can be 
roughly measured as brain wave frequencies and be altered 
through ingesting certain compounds into the body. At the same 
time, mental activity can influence the internal chemistry of the 
brain and body, such as the placebo effect. Therapies directed 
toward addressing multi-level links between mind, brain and body 
can be particularly effective in treating chronic diseases.42   

 
 

 
 

Figure 3-22 Self-Hierarchical Systems 
 
A multilevel systems view of life considers both bottom-up 

chemical mechanisms and top-down environmental factors. This 
includes the influence of genes, or nature, as well as environmental 
influences, or nurture. Another top-down effect in biology is that 
animals in ecosystems do not always evolve to maximize individual 
benefits, but also evolve to improve symbiotic relations to other 
animals. This contrasts parts-centric notions in biology that genes are 
purely “selfish”, and it shows that living systems have highly 
interdependent, top-down driven factors. A systems view considers 
models of upwards and downwards factors as parallel and alternative 
ways to understand the unified behavior.  

Proteins: 
(Modifies rules of DNA)

Mental States:
(Modifies rules of neural network)

DNA: 
(Rules produce proteins)

Neural Network:
(Rules produce mental states)

Figure 3-21 Bottom-Up 
and Top-Down Factors 

Higher-level 
 

Lower-level 
 

Top-down 
 

Bottom-up 
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Multilevel patterns can lead to seeming paradoxical 
feedback loops, where cause and effect are cyclically intertwined. 
A common example is the dilemma, “Which came first, the 
chicken or the egg?” This question asks how living systems arises 
if life is needed to create life in the first place. Cyclical causation is 
called a “strange loop” in the book Gödel, Escher, Bach. Geometric 
examples of strange loops are shown in Figure 3-23, including a 
Möbius strip where following a single surface will cover both sides. 
Another example is Penrose stairs, an impossible object where 
walking up the stairs will bring the walker back to the same place. 

The interaction between lower-level and higher-level 
systems plays a critical role in life and consciousness. Physical 
systems construct biological forms, which can then in turn 
influence physical systems. Humans design the environment and at 
the same time the environment influences human behavior. In 
order to understand these systems, both upwards and downward 
driving factors must be simultaneously considered.  

Importantly, the notion that higher versus lower-level 
models are fundamentally separate and independent from one 
another, is not consistent with a unified view of science and nature. 
Lower-level theories and higher-level theories should reflect 
parallel descriptions of the same phenomena. The behavior of 
collections should be consistent with the parts, and parts should be 
consistent with collections. Bottom-up versus top-down factors is 
a product of how emergent models interact for a given 
interpretation. A unified view of nature entails that reality itself not 
delineated by the boundaries of lower-levels versus higher-levels. 

 
Summary 

 

This chapter provides a foundational understanding of emergence, 
which is when a higher-level theory arises from limiting the domain 
of applicability of a lower-level theory. The need for emergent 
theories is in part driven by the fact that nonlinear interactions of 
complex systems can create patterns where the whole is not 
predictable by the sum of the components. Emergent theories can also 
propose completely new measures, called heterostructural theories, to 
understand the world in terms of different quantities, like temperature 
or phases. Following the unity of science, emergent theories of nature 
should be consistent descriptions of one reality. In Part II – Theory, 
specific models used throughout the history of science will be 
reviewed to explore the patterns found in natural systems.  

Physical 
Systems

Biological 
Systems

Information 
Systems

Human 
Design

Möbius Strip 

Penrose Stairs 

Figure 3-23 
Strange Loops 

Figure 3-24 Feedback 
of Systems 
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Chapter 4 History 
 

 
 

  
Human history is punctuated by pivotal periods where societies have 
revolutionized scientific models and design practices. This chapter 
focuses on historical events where systems of science and technology 
have drastically transformed, providing insights into the development 
of civilization. An equation for this historical review can be written as 
when systems of the past (SPast), have undergone changes and 
processes → to reach the present (SPresent). A historical review of 
impactful theoretical systems will contextualize modern science and 
current methods used to study natural patterns. 
 

 
SPast → SPresent 

 

Figure 4-1 History Equation 
 

 Societies across history have had fluctuating paradigms. 
Taking a simplified view, ancient and medieval philosophers often 
used holistic, systems-based, models of nature that emphasized 
relationships and connections. The success of Newtonian physics in 
the 18th century shifted Western science to prioritize a parts-based and 
predictable worldview, which dovetailed with industrialism, 
materialism, and resource extraction. In another shift of thinking, 
scientific evidence in the 20th century uncovered the importance of 
chaos, connectivity, and emergence. Moving into the 21st century, 
relations-based systems thinking is critical to coherently understand 
science and to address complex problems facing our world. 

Example 4.1 

Ancient cultures 
built megalithic 
stone structures, 
utilizing systems 
of geometry, 
astronomy, and 
architecture.   
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Paleolithic Technology 

 

Human systems for understanding nature and designing tools reach far 
back into evolutionary history. The earliest evidence of humanoid 
technology are stone tools like choppers, hand axes, and projectile 
points, the oldest of which date back 3.3 million years. 43  The 
controlled use of fire is thought to have begun 1.5 million years ago. 
Fire served as a critical tool to make food more easily digestible and 
to enable travel to colder regions.44 These early technologies showed 
that human ancestors were able to understand the environment and 
devise creative solutions to survive.  
 Humans continued to create more abstract systems of thought 
and practical technologies. Anatomically modern humans, Homo 
sapiens, arose around 200,000 years ago. 45   These early humans 
developed larger brains and new genes that would then support 
modern social traits, like complex vocal languages.46 Language was 
an important system that supported human development because it 
was a method to pass down detailed information across generations 
outside of genetics and mimicking behaviors. 47  Language aided 
humanity’s ability to organize into large societies, communicate ideas, 
and establish codes of conduct. Empowered by technology and 
language, humans migrated across Africa, Australia, Asia, Europe, 
and the Americas. 

The development of symbolic art served as an important 
communication system used in prehistoric cultures. Paleolithic (“stone 
age”) cave painting sites, like the Chauvet Cave in France dating to 
30,000 BCE, features renditions of plants, animals, humans, and 
geometric symbols that may have served as an early pictograph 
language.48  Another famous Paleolithic art piece is the Venus of 
Willendorf (24,000-22,000 BCE), a stone figurine thought to 
symbolize fertility and femininity.49 This art shows that early humans 
were deeply observant of nature and utilized abstract symbols.   

Neolithic societies could organize and solve complex 
engineering problems. One of the earliest examples of Neolithic 
architecture is Göbekli Tepe, a stone city complex in Turkey that may 
date back as far as 9600 BCE.50 The site features large megalithic 
stones with detailed carvings of animal figures that were transported 
to the location. This site is hypothesized to have served as a social and 
religious hub for early hunter-gatherer societies.51 Göbekli Tepe is 
also particularly interesting as this megalithic structure is much older 
than comparable sites found around the world, showing that humans 
could create complex buildings earlier than previously assumed in 
anthropology and archeology.  
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Agricultural Revolution 
 

An enormous leap in the development of scientific, 
technological, and economic systems occurred during 
the Agricultural Revolution, beginning around 10,000 
BCE. 52  During this time, nomadic hunter-gatherer 
societies began cultivating plants and raising animals. 
Fertile river deltas in regions like Mesopotamia, Egypt, 
India, and China became hotbeds of growth. Human 
diets included more agricultural products, and human 
physiology and genetics adapted accordingly to 
improve digestion of milk and starch-heavy foods.53 

The wide abundance of food sources allowed 
population explosions in permanent settlements. These 
large population centers organized into city-states with 
economic and political systems. 

The Agricultural Revolution drove innovations 
in systems of language, math, and geometry. For 
example, by 3500 BCE the Sumerian culture used a 
phonetic writing method, maintained records of 
astronomical patterns, and created the 360-degree circle 
still in use today. Ancient Sumerians approximated 
mathematical pi (p = 3.14…), which relates the area of 
a circle to the radius, as well as found Pythagorean 
theorem solutions to right angle triangles, shown on 
Figure 4-2.54 The Sumerians even developed formulas 
to find the volume of cubes, pyramids, and spheres.   

Megalithic stone structures built during the 
Agricultural Revolution displayed impressive systems 
of engineering and astronomy. The Stonehenge 
complex in England (3000 BCE) is known for circles of 
massive stones that closely align to the sunrise and 
sunset on the shortest day of the year. 55  Ancient 
Egyptians constructed large and precise monuments, 
like the Great Pyramid of Giza (2500 BCE or older) 
which nearly perfectly aligns along true north. The 
Thoth Hill temple in Egypt (3000 BCE) accurately 
aligns to the helical rise of the star Sirius, which requires 
detailed astronomical knowledge. 56  These buildings 
demonstrate that ancient cultures had advanced systems 
of architecture, geometry, and astronomy. 
  

Figure 4-3  Stonehenge Complex 
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Example 4.2 

Precise geometry, architecture, 
and astronomy was used to build 
the Great Pyramid of Giza. 

Ratios and 
Angles                       60° 
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Ancient Frameworks 

 

Symbolic frameworks of nature from ancient cultures around the 
world often contained attributes of systems thinking, like cycles, 
feedback, and interdependency. For example, the Ouroboros 
symbol of a circular snake eating itself represents the cyclical 
nature of life and death as well as the changing seasons throughout 
the year. The Ouroboros is an ancient motif found in many regions 
across the globe, including Greece and India as well as the 14th 
century BCE funerary text of Egyptian King Tutankhamen.57 This 
symbol conveys key aspects of systems thinking: the ability for 
feedback, reciprocal relationships, and a strange loop where the end 
feeds into the beginning.   
 The endless knot is another common ancient symbol found on 
clay tablets dating back to 2500 BCE in the Indus Valley.58 This 
symbol has many interpretations, such as the intertwining and 
interactions of opposing forces leading to union and harmony.  The 
symbol connects to a systems-based view by recognizing 
interconnected relationships of cause and effect and the ability for 
new patterns to arise from interwoven relationships.     

Hierarchical patterns, a common attribute of emergent 
systems, were symbolized in ancient models. Indigenous religions 
from the Americas, Asia, Africa, Europe, and Australia referred to 
higher- and lower-levels, connected by a cosmic tree.59 The Tree 
of Life symbol in Jewish mysticism represents a hierarchical 
pattern spanning physical to spiritual dimensions. In Indian 
religions, the Sri Yantra was a symbol of a mystical mountain 
connecting nesting levels of reality. Hierarchies of levels are even 
embodied in the Hindu chakra system, which describes stacking 
energy centers in the human body, displayed on Figure 4-5.  

 

 

                                                                                   
 

               Hygeia Pentagram           Chakra System                 Tree of Life                        Sri Yantra 

Figure 4-5 Ancient Systems of Elements and Hierarchies  

Endless Knot                      

Ouroboros  

Figure 4-4 Symbols of 
Change and Connection 

Water  

Air  

Heat  Idea  

Earth  

7.  Crown 
6.  Third-eye 
5.  Throat 
4.  Heart 
3.  Solar Plexus 
2.  Sacral 
1.  Root  
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Ancient models of nature often emphasized the 
relationships between multiple elements, or phases, that could 
apply to a vast array of both internal and external phenomena. For 
example, Pythagoreans used a five element system, of earth, water, 
fire, heat, and idea, which formed the interlinked Hygeia, or health, 
pentagram.60 This system was used to understand nature as well as 
personal health. Another system is the traditional Chinese Five 
Element theory of wood, fire, earth, metal, and water that is used 
in medicine and cosmology.61 In the Chinese Five Element theory, 
energy continuously transforms through the different elemental 
phases and one imbalance can affect the entire system. Both the 
Pythagorean and Chinese Five Element systems emphasized 
connected relations that applied to the macrocosmic environment 
and microcosmic self.  

Ancient Taoist philosophy utilized a model of nature’s 
patterns that prioritized interdependence of opposing forces. In 
Taoist cosmology, nature is first an undifferentiated whole, called 
the Tao. From this void, opposing forces of yin and yang emerge. 
These opposing forces, like hot versus cold, or light versus dark, 
arise in connected pairs and enable the ability to define nature’s 
characteristics. This model takes a systems-based view as 
individual elements are defined by relationships among the whole.  

Taoist cosmology utilizes nesting iterations, a pattern 
common to systems. Permutations of yin and yang can recursively 
iterate, representing more complicated forces of nature. The 
Trigrams include three yin or yang elements, which creates eight 
permutations (23 = 8), each representing unique forces. 
Combinations of two trigrams form the sixty-four states (26 = 64) 
of the I Ching, which are used in divination to understand cycles in 
nature. From here, further permutations lead to the “10,000 things”, 
or everything observed. Recursions that have a 2n growth also 
occur in other systems, such as the states created from the number 
of n steps that can be true or false.  

 

 
                 Tao       Ying-Yang           Trigrams                 I Ching                10,000 Things  

Figure 4-6 Taoist Cosmological System 

Example 4.3  

The Flower of Life is 
an ancient geometric 
symbol that has been 
found in Egypt, India, 
China, and Europe, 
with interlocking and 
nested patterns. 
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Axial Age 

 

New philosophical models and economic growth sprang forth 
in Eurasia from 800 BCE to 300 BCE. During this period, called 
the Axial Age, new schools of philosophical thought emerged 
across Greece, the Middle East, India, and China including 
Confucianism, Buddhism, Zoroastrianism, and others. 62 
Written documents became more common during this time, 
helping to record history and transmit ideas. In a time of relative 
peace, a philosophical society could flourish and establish ideas 
that still have influence today. The Axial Age was also a time of 
economic growth. Trade expanded through routes like the Silk 
Road, which allowed ideas to disseminate across far distances.  

During the Axial Age, mathematics became a more 
frequently utilized system for understanding nature’s patterns. 
The 6th century BCE Greek philosopher Pythagoras was a 
foundational figure in mathematics and is credited with 
discovering that musical harmonies correspond to numerical 
ratios. This idea also led to the notion that the proportions of the 
heavenly bodies (Moon, Sun, planets, and stars) can be 
understood through cosmic ratios called the music of the 
spheres. The Pythagorean sect even correlated numbers with 
mystical meanings and believed ideas such as “God is 
number.” 63  Pythagoras and other philosophers of this time 
pioneered the use of math to understand the patterns in nature. 

In the 5th century BCE, the philosopher Democritus 
proposed that nature was composed of indivisible units of 
different shapes and sizes, called atoms, and that all of nature 
can be described by how these atoms combine. The notion of 
atoms later became one of the foundational pillars of a parts-
based view of nature. While modern atomic physics shows that 
many of these ideas have relevance in certain domains, the 
concept of the atom was not pursued widely by other 
philosophers of Democritus’ time, who instead favored 
relationship-based models of nature.  

Ancient Greek philosophers often gave attention to 
geometry when searching for a rationale to describe nature. In 
Timaeus, dated 360 BC, Plato connects natural elements to 
geometric shapes called the Platonic Solids. The Platonic 
Solids, or regular solids, are 3-D polyhedrons made of triangles, 
squares, or pentagons that are identical from any face, edge, or 
vertex.  

 

 
Example 4.4  
Ptolemaic Model   

The standard view of the 
solar system in Europe in 
the 2nd century CE was a 
geocentric model where 
the Sun and planets 
revolve around the Earth 
in multiple nesting 
circles, called epicycles.  

 
 
 
 
 
 
 
 
 

      Order : 
 

Center. Earth  
1. Moon 
2. Mercury 
3. Venus 
4. Sun 
5. Mars 

6. Jupiter 
7. Saturn 
8. Fixed Stars 
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Plato associated the regular solids with the elements found in 
nature. The tetrahedron was associated with fire for being pointy and 
the cube was associated with earth for stacking easily. The octahedron 
was associated with the element of air for ease of sliding and the 
icosahedron was associated with water for ease of rolling, like small 
spheres. The dodecahedron, with 12 faces, was associated to the æther, 
which filled the region between the different celestial bodies and made 
the twelvefold division of the Zodiac in ancient Greek cosmology.64 

This presented a crude geometric model for understanding nature’s 
patterns. Interestingly, modern physics later proved these shapes are 
essential for understanding molecular geometry and crystal lattices.  

 
 

               
  Tetrahedron            Hexahedron               Octahedron              Icosahedron                Dodecahedron 

         (Fire)           (Earth)                    (Air)                        (Water)                 (Æther) 

Figure 4-7 Platonic Solids and Associated Elements 
 
Another advance in ancient Greece was 

the use of formal systems to deduce conclusions 
from a set of assumptions. Plato’s student and 
colleague Aristotle, alive 384 BCE - 322 BCE, 
developed syllogistic logic which looked at 
statements like, “If Socrates is a man, and all men 
are mortal, then Socrates is mortal.” 65   This 
statement would still make sense regardless of the 
terms, such as if a is equal to b and b is equal to c, 
then a is equal to c. By following the rules of logic, 
statements can be deduced as true or false. This 
laid the foundation for formal systems of logic and 
helped shape the scientific method. Euclid later 
used axiomatic and logical systems around 300 
BCE to prove a variety of geometric theorems in 
the book Elements. The advances of ancient 
Greece helped establish the foundations for 
modern approaches of math, logic, and science.  

 

Example 4.5 Euclid’s Postulates  

Euclid introduced a basic set of rules for 
geometry on a flat plane, which can be 
used to verify many geometric proofs. 
These postulates are: 

 

1) A line connects two points 
 

2) Lines can be extended forever 
 

3) Circles have a radius from a point  
 

4) All right angles are equal 
 

5) Parallel lines never intersect 
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Expanding Empires  

 

In the wake of the Axial Age, new empires transformed social and 
architectural systems. For example, Alexander the Great, leader of the 
Macedonian Empire of Greece, gained control of a vast region of land 
that included Persia and Egypt. The Greeks constructed massive 
architectural edifices utilizing stone columns, like the Parthenon 
temple, shown in Figure 4-8. The Roman Empire, beginning around 
50 CE in what is present-day Italy, improved construction methods 
with inventions like Roman concrete that enabled blocks to be shaped 
to specification. The Roman Empire completed impressive 
infrastructure projects, including bridges, roads, aqueducts, dams, and 
amphitheaters, such as the Coliseum.66 The Romans also pioneered 
new techniques for building arches and domes, such as the Pantheon 
temple, which remains the largest concrete dome ever built without 
reinforcing steel. These massive construction projects required 
advanced systems of math, architecture, and engineering, and helped 
set the stage for modern urban architecture. 

 

                
 

                                                        Parthenon, Athens                          Pantheon, Rome                                                            

Figure 4-8 Achievements in Ancient Architecture 
 

 Farther east, many new cultural and scientific developments 
occurred in the rise of the Islamic empires starting in the 7th century. 
The Islamic empires controlled a massive expanse of land from the 
Arabian Peninsula to North Africa, and managing this large empire 
required mathematics and detailed recordkeeping. The 8th-13th 
centuries marked the Islamic Golden Age when considerable 
scientific, cultural, and economic innovations took place. There was 
a heavy emphasis on translating past works, like Euclid’s Elements, 
that were unavailable in Europe after the fall of the Roman Empire. 
Another important development included treating algebra as its own 
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field of study that led to advancements beyond previous Greek 
geometers. The Islamic empires also progressed architecture with 
intricate geometric patterns, such as the Sheikh Lotfollah Mosque 
shown in Figure 4-9. 

  

 
 

Figure 4-9 Islamic Architecture 
 
Arabic mathematicians utilized (from earlier Indian sources) 

a positional base-ten number system to express large numbers, a 
method still used today. In this method, the digits represent a 0 to 9 
value, and the position of the digit simultaneously represents what 
power of ten the value corresponds to, as displayed in Figure 4-10. 
Arabic mathematicians also introduced decimal point notation of 
fractions, where 0.001 corresponds to the ratio of 1/1000.67  

 
 

 
    10-Digits:  0   1   2   3   4   5   6   7   8   9           Positional:  2,526  =  2000 + 500 + 20 + 6 

 

 

Figure 4-10 Hindu-Arabic Numeral System 
 
Medieval Islamic scholars were able to explore both science 

and philosophy simultaneously in an integrated fashion. Science was 
not viewed as contradictory to religious philosophy, but rather seen 
as another way to understand the divine aspect of nature. This unity 
of science and philosophy allowed for both physical experimentation 
and the exploration of the limits of knowledge. Medieval Islamic 
scholars did not attempt to reduce all of nature and believed that some 
aspects of reality were beyond intellectual comprehension. 
Similarity, systems theory does not harshly distinguish between 
science and philosophy, and it uses both to understand nature.   

Example 4.6 Algebra 

Al-Khwarizmi 
introduced algebra 
around 820 CE in a 
book that presented 
general solutions of 
linear equations, 
like: ax+by=c,  and 
quadratic equations, 
like ax2+bx=c.  



 
60        Part II - Theory     

 
The European Renaissance  

  

The European Renaissance was a revolutionary time of 
scientific, architectural, and artistic advancements centered 
in Italy in the 12th century. Europeans learned from the 
advances in Islamic sciences (in part due to the violent 
Crusades centered in the Middle East), picking up fields like 
algebra and trigonometry, as well as Greek manuscripts that 
had been absent during the medieval period, such as 
Euclid’s Elements.68  The reintroduction of these classics 
spurred Neoclassical architectural design and the desire to 
further build upon the scientific achievements of previous 
ancient cultures.  

The European Renaissance was in full swing during 
the 15th and 16th centuries and famous polymaths such as 
Leonardo da Vinci, Michelangelo, and Raphael made 
notable contributions to science and art. Raphael’s painting 
of the School of Athens depicts many ancient thinkers, 
demonstrating the large influence classical cultures had in 
the Renaissance. Another famous art piece was da Vinci’s 
Vitruvian Man, which combined anatomy and geometry to 
display the symmetry of the human body. This drawing also 
finds an approximate solution to creating a circle and square 
with the same area, a common mathematical problem of 
antiquity.69 Many of these polymaths, like da Vinci, took a 
systems view of nature, science, and art that highlighted 
connectivity. However, this was soon to change. 

 
 

 

         
                  

                        School of Athens by Raphael                                Vitruvian Man by Leonardo da Vinci 

Figure 4-11 Renaissance Artworks  

Example 4.7 Kepler’s Laws 

Johannes Kepler published 
rules of planetary motion in 
the early 1600’s. These rules 
posited that the orbits of 
planets are ellipses 
(elongated circles) rather 
than nested circular orbits 
(epicycles). Additionally, a 
line segment joining a planet 
and the Sun sweeps out 
equals areas during equal 
time intervals, as shown 
below with area a. This law 
increased the ability to 
calculate planetary motion. 

 

a 
a 
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During this time, an extremely useful tool was created to 
study mathematical systems. The 17th century philosopher René 
Descartes proposed a coordinate grid of three axes (x, y, z) to 
model spatial relations. The Cartesian grid provides a way to 
ascribe algebraic meaning to geometric objects, and unites 
geometry and algebra into a single system. Descartes also 
increased the use of symbolic logic, like using the variable x, to 
represent mathematical and geometric relations.   

 A revolutionary theory was proposed in the 16th century 
that placed the Sun in the center of the solar system and 
challenged the status quo of a geocentric worldview, which is the 
idea that the planets and Sun revolve around the Earth. Nicolaus 
Copernicus was a proponent of a heliocentric theory and 
supported the Copernican Revolution, the view that the Sun is 
the center of the solar system. Galileo, armed with an advanced 
telescope, provided data to support the heliocentric theory. In the 
early 17th century, Johannes Kepler posed the idea that planetary 
orbits followed elliptical paths bound by specific laws of motion, 
which provided more evidence for the heliocentric model. In a 
heliocentric worldview, the Earth was no longer the center of the 
solar system, which challenged religious ideas of the time and set 
the scientific and religious thought communities at odds.   

Isaac Newton provided the final breakthrough to 
mathematically describe the heliocentric theory. Newton 
famously contemplated why apples always fall downwards, and 
then had the revelation that the same force of gravity that made 
the apple fall also makes the Moon fall to Earth. Unlike the apple, 
the Moon never hits the Earth’s surface due to its orbiting speed. 
Contrasting Aristotelian physics, which explains nature based on 
“causes” whereby objects serve different intrinsic purposes and 
goals, Newton’s model used forces to calculate trajectories for 
objects in the solar system and on Earth alike.   

Newton proposed that objects are attracted to each other 
by the force of gravity in proportion to their masses divided by 
the distance squared. Through this law of gravity, Newton was 
able to formulate a system of math equations that corresponded 
to astronomical observations. Using Descartes’ coordinate grid 
and newly invented calculus, Newton proved that the planets 
must move in elliptical orbits and follow the relations Kepler had 
previously shown. This revelation finally addressed a question 
Plato had posed nearly 2000 years earlier: “How can the motions 
of the planets and stars be explained through mathematical 
laws?”70 

Example 4.8 Evolving 
Cosmological Systems 



 
62        Part II - Theory     

 
A Clockwork Universe 

 

A groundbreaking theory for modeling physical systems was 
proposed in 1687 by Isaac Newton in the book Philosophiæ Naturalis 
Principia Mathematica, which introduced three laws of motion that 
laid the foundation of classical physics, summarized below.71  

 
1. An object’s motion does not change unless acted upon by a force 
2. Force = Mass · Acceleration  
3. Every force has an equal and opposite force  

 
Figure 4-12 Newton’s Laws of Mechanics 

 
These laws provided the basis for creating a mathematical 

theory of how objects are influenced through forces and collisions. 
This theory can very accurately predict some situations, like the 
trajectory of objects affected by gravitational force and the angles and 
forces of collisions, as shown in Figure 4-13. The 3rd law of motion, 
that “every force has an equation and opposite force,” also aligns with 
the notion that energy and momentum are conserved. Newtonian 
physics began to reveal the powerful ability of math to accurately 
model systems of nature. 

 

 
 

Figure 4-13 Force of Gravity and Collisions in Classical Mechanics 
 
The success of Newtonian physics led many philosophers to 

believe all natural patterns are determined by predictable mechanisms. 
This concept, called determinism, is exemplified by the concept of 
Laplace’s Demon, proposed by French scientist Pierre-Simon Laplace 
in 1814. This concept maintains that if a hypothetical being, or demon, 
knew the precise location and momentum of all objects, it could, with 
immense amounts of calculations, predict all future and past outcomes 
with full certainty. 72  The initial findings of Newtonian physics 
supported the case that all of nature was determined by solvable 
mathematics, and that Laplace’s Demon could be theoretically valid.  

Earth 
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The successes of Newtonian mechanics led the scientific 
community of the time to favor the belief that all questions about 
nature are predictable and decidable by mathematical laws, and that 
the properties of wholes can be fully understood by the models of the 
components. Accompanying a clockwork view of easy to calculate 
predictability, European scientists often assumed nature to be 
completely mechanistic and devoid of intelligence. This meant that the 
human body was seen as nothing more than a predictable machine of 
atomic processes with no connection to logic. Similarly, Cartesian 
duality held the view that the mind was a separate substance than 
matter. These philosophical stances pictured an unintelligent, 
mechanistic, and reductionistic world, which set the tone for scientific 
inquiry in the 18th and 19th centuries, prior to being challenged by 
discoveries of complex, chaotic, and informational systems.  

 
 

Globalization and Sustainability    
 

European colonialism radically changed global social and economic 
systems during and after the 15th century. Colonial empires, including 
the French, British, Portuguese, and Spanish, exploited societies in 
Africa, Asia, and the Americas and siphoned their natural resources at 
unprecedented levels. These colonial empires prioritized extractive 
economics, large-scale industry, the slave trade, and racial inequality, 
which all contributed to many of the injustices we face today.  

For better or worse, the development of global empires 
increased the scale of impact and connectivity of humans across the 
planet. Global trade and travel became possible across Asia, Europe, 
Africa, and the Americas which spread new ideas and technologies. 
However, a more interconnected world meant greater risks, like 
military invasions, the spread of diseases, and greater potential for 
exploitation. These events showed that the world was becoming more 
connected, for better or for worse.  

The Industrial Revolution in Europe sparked a series of new 
technologies that catalyzed productivity. Inventions of the 18th and 
19th centuries such as steam engines, electric generators, and the 
automobile enabled a rapid expanse of cities, infrastructure, and large-
scale agriculture. Moving into the 20th century, the shapes of cities 
shifted from circular plazas and footpaths into high density linear 
arrangements that were more easily accessible by automobiles. Strong 
steel frames supported the development of suspension bridges, 
skyscrapers, and huge radio towers that changed the skyline of cities 
to come.  
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Since the 1800s, the global population and its resource usage 

has dramatically expanded. It took over 200,000 years for the modern 
human population to reach one billion members, yet the human 
population reached 8 billion just 200 years later.73 The UN estimates 
that population will plateau around 11 billion by 2100 if current 
fertility rates continue, as more developed countries usually have 
fewer numbers of children.74  In the 21st century, the rapid resource 
usage of the human population is impacting the world at global scales. 
In an interesting twist of fate, the same tools that led to human 
expansion are now the potential sources of civilization’s collapse.  

Humans are now extracting resources and polluting the 
environment at global scales. Dwindling resource reserves resulting 
from overextraction exist in many sectors like cropland, fishing 
grounds, forest products, and grazing land. In 2022, the Global 
Footprint Network reported that it would take around 1.75 Earths to 
sustainably meet human demand at current levels. 75  Another 
unsustainable activity is the use of fossil fuels and other practices that 
result in the increase of carbon dioxide emissions—a primary driver 
of climate change. From 1800 to 2022, human-caused carbon 
emissions experienced over a 1000-fold increase, displayed in Figure 
4-14.76 The atmospheric carbon concentration is now higher than ever 
recorded in the past 800,000 years of ice core measurements.77  

 
Figure 4-14 Global Human-caused Carbon Emissions 

 
 Extractive economic systems have been a large motivator of 
unsustainable practices and the exploitation of society and the 
environment. Capitalism often champions endless growth at the cost 
of resource depletion, and prioritizes profits over public gains, as 
summarized in Figure 4-15. These economic models increase the risks 
of socioeconomic crises and impede the ability to generate long-term 
sustainable solutions. Sustainability works to transform extractive 
economic models into regenerative economic models that promote 
longevity, renewable resources, and serves many social stakeholders.  
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Figure 4-15 Unsustainable and Extractive Economics 
 
The environmental movement began to arise in its modern 

form as a response to the negative environmental and social impacts 
of the 19th century Industrial Revolution. This movement has 
increased in the 20th and 21st century, there has been a growing efforts 
to redesign civilization’s relationship with the environment for long-
term sustainability. Inspirational books from the 1960s to 1970s 
brought environmental problems to the public’s eye, like Rachel 
Carson’s Silent Spring and Donella Meadows’ The Limits of Growth. 
These books supported the view that human-caused pollution can 
negatively influence the environment and that there are limits to 
Earth’s resources. Environmental science, which has since grown to a 
large field in the 20th and 21st centuries, highlights that human actions 
and nature must be considered together as an interacting system.   
 In the 21st century, sustainability has become a more general 
concept beyond environmentalism that includes economic and social 
systems. The sustainability movement has attracted public attention 
due to the increasing impacts of climate change, population growth, 
and resource constraints. The new science of sustainability shows that 
humans can impact the global environment, and that humanity needs 
to redesign our technology for long-term viability. Sustainable 
systems support resilient interconnectivity instead of isolated 
individualism, and the balance of cooperation and competition, 
instead of extractive competition. As a whole field, sustainability 
presents a new scientific revolution for learning how to harmoniously 
manage the environment, society, and economy—and systems 
thinking is core to this change. 
 

Summary 
 

Scientific and philosophical models have dramatically changed over 
time. Ancient worldviews skewed systems-based, but this changed in 
the 18th century in Europe with mechanistic science, which supported 
a reductionist and predictable model of nature. Going into the 21st 
century, there is a new revolution of systems science and sustainability 
that presents a view that nature and society is interrelated through 
numerous complex and connected relationships.  

Endless      
Growth 

Resource 
Depletion

Extractive 
Economics

Money        
Before Society
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Chapter 5 Equilibrium    
 

 
 

 
Equilibrium provides a common pattern and foundational scenario to 
study systems. A system in equilibrium has a set of quantities that does 
not change from the initial to the final state, written as DX = 0, where 
DX = XFinal – Xinitial. In physics, X can represent measures like velocity 
and forces that remain consistent over time. For example, Newton’s 
law that when one object exerts a force on another object, the second 
object exerts an equal and opposite on the first, means the total forces 
will sum to zero, written {Total Forces = 0 }, and remain at 
equilibrium over time.  
 

 
S :{DX = 0 }  

 

Figure 5-1 Equation of Equilibrium 
 
Equilibrium is integral to many fundamental concepts in 

physics such as the conservation of energy and the principle of least 
action (the tendency for systems to follow a path of least resistance). 
The principle of least action can be seen in the smooth curves of soap 
bubble films and has applications for efficient architectural designs. 
Many models used in modern physics, from electromagnetism to 
gravity, are solutions that minimize action and conserve quantities, 
like energy and momentum.  Systems in equilibrium often have 
equations that are easy to predict and solve for. Systems at rest in 
equilibrium provides a conceptual steppingstone to understand more 
complex and dynamic scenarios. 

A system of rocks 
is able to maintain 
an equilibrium 
under the force of 
gravity if the 
weight is equally 
distributed around 
a balance point. 
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Vector Fields 

 

A vector is a useful mathematical tool to model 
equilibrium or lack thereof. A vector is similar to 
a number in that it has a magnitude (1, 2, 3, ...), but 
is different because it also has a direction. Vectors 
can be broken down as the sum of multiple 
component vectors in a coordinate system, like the 
x, y, and z Cartesian axes. For example, a ball 
moving on a trajectory on a plane will have a 
vector along the x axis, representing horizontal 
velocity vx, and another vector along the y axis, 
representing vertical velocity vy, for a total velocity 
of v = (vx, vy,). In this example, the force of gravity 
decreases the velocity along the vertical axis, but 
has no effect on the horizontal velocity, creating a 
curved trajectory depicted in Figure 5-2.   

A system will be at static equilibrium 
when all the force vectors balance and sum to zero 
S :	{Forces = 0}.78 For example, a stable arch has 
equal and opposite forces along each juncture to 
create a system that is structurally stable, shown in 
Figure 5-3. If the sum of forces did not equal zero, 
the arch would experience forces that cause 
acceleration, following Newton’s law of Force = 
Mass × Acceleration. 

Vectors are defined within coordinate systems, such as the 
Cartesian grid of x, y, and z axes. An essential feature in a coordinate 
system is that each of the axes are positioned at right angles, or 
orthogonal, to one another. Orthogonality allows each axis to operate 
independently, which means vectors can be broken down into 
individual components that do not influence one another. For 
example, a change in the x axis does not influence the y or z axis. This 
also means that for a system to be in equilibrium, the sum of forces 
must equal zero along each independent axis. Other coordinate 
systems exist as well, such as cylindrical coordinates and spherical 
coordinates, which is comprised of a horizontal angle q, vertical angle 
f and radius r, as shown in Figure 5-4. Mathematical results will be 
identical regardless of the coordinate system chosen, but some 
coordinates make it easier to find solutions. For example, it is easiest 
to use spherical coordinates when modeling an atom or the Earth, due 
to the approximately spherical symmetry.  

Figure 5-2 Velocity Vectors in Trajectory  

Figure 5-3 Arch Vectors in Equilibrium  
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Figure 5-4 Orthogonal Coordinate Systems                

A common method to model systems is by a vector field V, 
which defines vectors—possessing magnitudes and directions—at 
each point in a continuous space. Boldface font is used to denote 
fields, like V, that represent a continuous space of values. Earth’s 
gravity can be modeled as a vector field, as shown in Figure 5-5. In 
this field, the vectors all point to the Earth’s center of mass and have 
greater magnitude, signified by longer arrows, closer to Earth. A 
spinning vortex of water can also be modeled with a vector field. In 
this field, the vectors will have a greater spin closer to the center of the 
vortex. Vector fields provide a way to represent forces in a continuous 
space and calculate results, such as trajectories. Another simpler case 
of a field is a scalar field which has magnitude, but no direction at each 
point, such as a distribution of temperature values in a volume of air.  

 

 

Vector Field V 
of Gravity: 
 

Vectors point 
towards the 
center and 
decrease in 
magnitude 
closer to center  

Vector Field V 
of Vortex 
 

Vectors spiral 
around the 
center with a 
greater twist, 
closer to the 
center   

 

Figure 5-5 Continuous Vector Fields 
 
Vectors are used in interesting ways across disciplines to 

model systems. For example, vectors can be used in computer 
software and be applied to abstract spaces of data. Vector fields can 
even be used in more extravagant coordinate systems with additional 
dimensions, as is the case with spacetime in the theory of relativity. 
From physical to abstract cases, vector fields provide an indispensable 
tool to model systems. 
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Rates of Change  

 

Rates of change can distinguish a system’s quantities that are either 
changing or in equilibrium. Velocity v represents the rate of change 
of distance x over change in time t, written v = Dx / Dt. The change 
in the velocity over the change in time is called acceleration, 
written a = Dv / Dt.  These rate changes represent averages over a  
time period, however, calculus introduces the derivative d to define 
the rate of change at each instant. For example, the derivative of 
distance over time provides the velocity at each instant, v = dx / dt. 
  The derivative of a function f (x) with respect to x, which is 
written df (x) / dx, is the rate of change when the change approaches 
zero, Dx → 0. The derivative is geometrically equivalent to the 
slope of the function, which is the change in height (f (x+Dx) – f (x)) 
divided by the change of width Dx, as shown in Figure 5-6. 
Integrals, written as ∫, are the reverse operation of a derivative and 
are geometrically equivalent to the area covered by a function f (x). 
For example, the integral of acceleration over time returns velocity, 
and the integral of velocity over time returns distance. Integrals can 
solve difficult problems, like the total distance traveled with a 
changing velocity, or the total area covered with a changing path.  
 

 

		 d	f (x)
dx

	= limit
Dx → 0

+f (x +Dx)	–  f (x)
Dx

, 

 
    Derivative  =   Infinitesimal Rate of Change 

   

 

Figure 5-6 Derivatives and Integrals 
 

Partial derivatives ∂ take the derivative in respect to one 
variable while holding others variables constant in a multivariable 
function, like f(x, y, z). A useful tool is the del operator Ñ, which is 
the partial derivative along each (x, y, z) vector component, 
following Ñ = (∂/ ∂x, ∂ / ∂y, ∂ / ∂z). The del operator can be used to 
find the gradient, the total direction and magnitude of greatest 
increase of slope. For example, if a mountain surface M = f (x, y) 
defines the height at each point x and y, the gradient ÑM points in 
the direction of steepest ascent.79 The gradient can be used to find 
how water will flow down a hill, which will be opposite to the 
direction of steepest ascent. Gradients can also be used to find rates 
of change in volumes, like the direction where temperature changes 
most quickly in a volume of air.  

Slope   

df(x)
/dx 

x 

f (
x)

 

   Area  
∫ f(x)dx 

  M = f (x, y) = Mountain  

 Figure 5-7 Surface Gradient 

ÑM = Mountain gradient 
 
 

ÑM = 
∂M
∂x

 x + 
∂M
∂y

 y  

  

A system’s stock 
changes by the flow 
rate. A stock in a bath is 
the water level, and the 
flow is the rate of how 
the water changes. A 
system is in equlibrium 
when the total flow is 
zero. The flow rate is 
found by the derivative 
of the stock over time, 
while the stock is found 
by the integral of the 
flow over time.  
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The del operator Ñ can produce other useful descriptions of a 
vector field V, such as divergence and curl. The practical interpretation 
of these terms is that the divergence describes the flow in and out, and 
the curl correlates to the twist and rotation, associated with a source 
that is disrupting and altering the field.80 Mathematically, divergence 
is calculated with the dot product Ñ	⋅	V and the curl uses the cross 
product Ñ 	×	V. A summary of the geometric interpretations of 
different rates of change is summarized below in Figure 5-8. These 
tools can model how multi-dimensional vector fields behave. 

 
 

Name: 
 

Gradient 
 

Divergence 
 

Curl 

Notation: Ñ V Ñ	⋅	V Ñ	×	V 

Meaning: Slope’s direction Flow in and out Twist and rotation 

 
 

Figure 5-8 Interpreting Vector Fields 
 
Divergence and curl arise in modeling electromagnetic fields. 

Electric fields are created by electric charges, like a positively charged 
proton or negatively charged electron. Like gravity, electric fields are 
proportional to the source magnitude divided by distanced squared, 
but electric fields can point toward or away from the source depending 
on charge. A stationary electric field E has a divergence proportional 
to the charge density r, but zero curl. Magnetic fields B are created by 
moving charges, called currents, and have a curl proportional to the 
current density J, but zero divergence. Maxwell's equations of static 
electric and magnetic fields are displayed in Figure 5-9 and show the 
stark difference of the in and out divergence of electric fields versus 
the twisting curl of magnetic fields.81 A critical caveat is that dynamic, 
or changing, electric fields can induce magnetic fields and vice versa, 
and both can be expressed as a unified electromagnetic field.  

 

 

 
 

Figure 5-9 Divergence and Curl in Electric and Magnetic Fields 
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Laplace’s Equation 

 

Another method to study the behavior of systems and equilibrium is 
to analyze the second order derivative, written d 

2, which is the “rate 
of change” of the “rate of change”. When considering a path 
graphed on the x and y axes, the first-order derivative, dx / dy is the 
slope or rate of change of x with respect to y. The second order 
derivative, d 

2x / d 

2y, is the rate of change of the slope. A positive 
second order derivative means that the slope is increasing with an 
upward curve, and a negative second derivative means that the slope 
is decreasing with a downward curve. When the second order 
derivative is equal to zero, the slope is a constant straight line and 
does not increase or decrease, as shown in Figure 5-10.  

Laplace’s equation defines a field where the second order 
derivative equals zero, which is a critical tool for modeling systems 
in equilibrium. When the second order derivative is zero, there are 
no maximums or minimums inside the boundary points, and the end 
points are connected in the most efficient path, like a straight line as 
well as other optimal forms. Second ordered derivatives can be 
extended to three spatial dimensions of x, y, and z by squaring the 
del operator, written Ñ2. Laplace’s equation is satisfied when the 
second order rate of change Ñ2 of a field V equals zero.82  

 

  Laplace’s equation: Ñ2V = 0         Del Squared Ñ2 = # ∂2

∂x2 , ∂2

∂y2 ,	 ∂2

∂z2	$            

 
Figure 5-11 Laplace’s Equation and Del Squared 

 
 Laplace’s equation commonly comes about in 
systems that optimize surface area because this equation 
yields efficient geometries that avoid local minimums 
and maximums. For example, if a square ring of metal is 
dipped into soapy water, a film surface will form into a 
geometry that minimizes the surface area and follows 
Laplace’s equation.83 Even if the metal ring is bent, the 
soap film will form into a smooth surface that avoids 
local bumps and dips. It should be noted that soap films 
that enclose a region of space, such as spherical soap 
bubbles, do not follow Laplace’s equations and can have 
a constant average curvature. However, all soap films 
still form in geometries that minimize the surface area to 
cover a given volume under the given forces.  
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In a static state of equilibrium, both the electric 
field and the gravitational field follow Laplace’s equation 
between point sources of mass or charge.84  A charged 
source in an electric field will create a local minimum or 
maximum in the field, but the field between these sources 
will form a perfectly smooth contour, similar to the smooth 
shape of a soap film. This remains true even with multiple 
sources in the same field. In Figure 5-13, the white and 
black dots represent positive and negative charges, and 
lines are drawn where the electric field has a constant force, 
like elevation lines on topographical maps. These field 
lines follow a Laplacian form, with no local minimums or 
maximums between point sources. Magnetic field lines are 
perpendicular to electric field lines, and form 
accompanying optimal forms.  

Many systems of nature modeled by vector fields 
settle into a smooth Laplacian contour in a state of 
equilibrium. For example, when tracing a steady flow of 
non-viscous water without turbulence around an object, the 
flow paths will create a smooth Laplacian distribution with 
no minimums or maximums. The heat distribution in a 
static system, such as a heat field around a steady candle, 
follows the Laplace shape. The air around the candle 
smoothly transitions from hotter (closer) to colder (more 
distant). While there may be small temperature 
fluctuations at the microscopic level, Laplace’s equation 
provides an effective approximation to model the heat 
distribution in equilibrium. An important caveat is that 
Laplace’s equation is broken when fields are not static, like 
with moving charges, masses, and heat fluxes, which 
create waves and disturbs the static equilibrium.  

 
 

                     
  Non-Viscous Streamlines           Static Heat Field                       Static Gravitational Field  

 

Figure 5-14 Systems with Laplacian Fields  

Figure 5-13 Laplacian Shapes in 
Electromagnetic Fields 
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Equilibrium Forms 

 

Stable systems in nature are maintained through balancing forces. In 
stable stars, for example, the inward forces of gravity must be opposed 
by the outward pressure of the star’s molecules, to create hydrostatic 
equilibrium.85  In the stable orbits of our solar system, a planet’s 
velocity is just fast enough to create a centrifugal force equal and 
opposite to the gravitational force of the Sun. A lower speed would 
cause the planet to spiral into the Sun and higher speed would cause 
an outward spiral. At the atomic scales, helium atoms are highly stable, 
because two negatively charged electrons are electrically balanced 
with two positive protons. These two electrons completely fill the first 
wave orbit, creating an inert atom that does not tend to react. These 
stable systems balance the relevant forces and avoid undergoing 
change unless acted upon by external forces from the environment. 

 

 
Figure 5-15 Stable Systems in Nature 

 

A common form of stable equilibrium is the catenary 
curve, which occurs as ropes or other string-like objects 
optimally balance the force of gravity when hanging. These 
curves are similar to a Laplacian shape, but they also have a 
degree of tautness marked by the constant c that creates a single 
dip. For example, a tighter rope is described with a larger c, and 
a looser rope has a smaller c, as shown in Figure 5-16.  Catenary 
curves can be applied to find engineering solutions that 
efficiently balance forces, such as in suspension bridges.  

Additionally, the inverse of a catenary curve can be used 
in architecture to optimally balance compression under gravity. 
The hanging catenary curve of a string is only held aloft by pure 
tension, the resistance to outward-pulling forces, and is not held 
up at all by compression, the resistance to inward-squeezing 
forces. Conversely, the flipped version of a catenary curve 
creates a form with pure compression and zero tension, a 
property that can be utilized in architecture.  

Figure 5-16 
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  Catenary Curve: 100% Tension        Catenary Arch: 100% Compression 

          Figure 5-17 Catenary Arches 

Catenary curves can be seen in Spanish architecture.86 
For example, a traditional method used in Spain to find optimal 
shapes of arches is to hang a rope between end points covering 
the same distance, then invert the curve. Antoni Gaudí, a 
Spanish architect in the late 1800s, built arches that followed 
catenary curves and used intricate hanging chain models to find 
efficient architectural geometries. The pinnacle of Gaudi’s 
design, the Sagrada Família in Barcelona, features beautiful 
columns inspired by catenary curves and tree branch forms. 
These designs work to efficiently balance compression forces.  

Equilibrium in a system can also be achieved through 
tensegrity, which is a combination of tension and compression 
forces. Tensegrity forms can have extremely high strength-to-
weight ratios by utilizing lightweight materials with immense 
tension strength. For example, a lightweight string can suspend 
a large weight under tension. Suspension bridges utilize 
tensegrity to optimize strength-to-weight ratios and flexibility. 
Heavy beams support compression forces, while relatively 
light-weight metal cables hold the bridge up in tension. 
Tensegrity can be used in many geometric arrangements. 
Figure 5-18 displays a tensegrity form of four rods and twelve 
strings to support compression and tension forces. 

Tensegrity helps explain the function of numerous 
biological systems. In the human body, the skeletal system 
supports compressive forces, while the tendons and muscles 
are connected through tension. This provides a flexible system 
with a high strength-to-weight ratio. At the cellular level, the 
cytoskeleton (a network of protein filaments and tubules that 
give cells their shape) is also suspected to utilize tensegrity.87  
Following these theories, the cytoskeleton’s microtubules 
provide compression strength, while the filaments provide 
tension strength, enabling the cell to have a flexible, strong, and 
lightweight structure. 

Figure 5-18 
Tensegrity Forms  

Suspension Bridge  

Rods and Strings 

Cellular Cytoskeleton 

flip  
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Principle of Least Action  

 

One of the most powerful physical theories to study systems in 
motion is the principle of least action. This principle asserts that out 
of all possible trajectories of motion, the real physical trajectory will 
be the option that minimizes the action. For example, water will 
flow downhill and reduce the potential energy of gravity, not flow 
uphill. Similarly, a metal coiled spring will move toward the 
equilibrium, rather than an outstretched or compressed position.   

Analyzing the units of action provides an intuition of what 
it means to minimize action. Action uses units of (energy · time) or 
(mass · speed · distance). So, the principle of least action is followed 
when energy is minimized over a given time interval or the distance 
is minimized for a mass moving at a given speed. For example, a 
moving object not exposed to force will travel in a straight line 
because that is the shortest path of least distance. Similarly, water 
under gravity will flow down a hill’s gradient over time because it 
is the most time efficient way to lower potential energy.  

Action is defined as the integral over time of the Lagrange 
L, which is the difference of kinetic and potential energy. The simple 
equation that action is minimized over time can even be used to 
derive Newton’s laws of motion, such as F = ma.88 The principle of 
least action can be thought of as more fundamental than the 
equations of motion, as it dictates which equations of motion are 
valid. The principle of least action is deeply related to equilibrium, 
as action is minimized and zero over small finite changes δ. 

 
  

  Action is minimized in real trajectories  (δAction = 0) 
 

  Action Units: (Mass · Speed · Distance), or (Energy · Time) 
 

  Action  = ∫ Ldt        L = (Kinetic Energy – Potential Energy) 
 

 

Figure 5-19 Principle of Least Action 
 

The principle of least action provides the backbone for 
generating equations of motion for many physical models, such as 
thermodynamics, electromagnetism, and fluid dynamics.89  Every 
known fundamental force in physics, from general relativity to 
quantum mechanics, follows the principle of least action in some 
fashion. Each of the fields in the standard model of particle physics 
can be reformulated as Lagrange L with the shared property that 
action is minimized.90 
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The principle of least action combines with symmetry to 
produce another fundamental concept in physics, the conservation 
of energy and momentum. A symmetry assumed in physics and the 
unity of science, is that one set of universal rules are used to model 
nature regardless of the chosen coordinate system’s spatial, angular, 
and temporal orientation. When the principle of least action is 
applied to these symmetries, it can be proven that interactions that 
are the same, or symmetrical, to a coordinate system of any location 
must conserve momentum. Interactions symmetrical to any angle 
must conserve angular momentum and interactions invariant to time 
must conserve energy. More generally, Emmy Noether proved in 
1915 that every symmetry in a differential field, like translation, 
rotation, and time, has a corresponding conservation. 91  
 

 

                  Symmetry  
 

Conservation Law 

Space-translation 
 

Linear Momentum 

Rotation-translation Angular Momentum 
Time-translation Total Energy 

 
            Figure 5-20 Symmetry and Conservation Laws 

  
Conservation laws can be used as a powerful tool by 

comparing a system at different points in time. In the interactions of 
particles, for example, the total energy and momentum in the initial 
set of particles must be equal to the total energy and momentum in the 
final set of particles, as shown in Figure 5-21. By starting with some 
known quantities, conservation laws can be used to find solutions to 
other unknown quantities.  Many physics equations, such as the 
Schrödinger Equation in quantum mechanics, are formulated by 
comparing different expressions of total energy that follow 
conservation laws as well as the principle of least action.92   
  

 
 

            Figure 5-21 Conservation Laws and Interactions 
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Special Relativity  

 

Proposed by Albert Einstein in 1905, relativity modeled a new 
symmetry and equilibrium of space and time, that the speed of light 
remains constant for all reference frames. Relativity was motivated 
out of the puzzling result that Maxwell’s equations predict that light 
always moves at a constant speed regardless of the frame of 
reference.93 Relativity solved these problems by posing a new system 
of space and time that allows for the speed of light c to always remain 
constant Dc = 0, even if a frame of reference is moving. This 
seemingly innocent equilibrium, that the speed of light is constant in 
all reference frames, required reforming concepts of space and time. 

Relativity differs dramatically from classical physics. In 
Newtonian physics, light emitting from a car’s headlights would equal 
the combination of the car's velocity v with the speed of light (v + c). 
Conversely, relativity requires light to travel at the same speed when 
the car is both stationary and moving, contradicting Newtonian 
mechanics. At low speeds, this does not make a big difference, but 
when the car’s velocity is close to the speed of light, the behavior is 
radically different. Relativity reconciles these differences with 
relativistic dilation, where measurements of distances, time, and mass 
can change depending on the velocity of the frame of reference. 

To understand dilation, consider a clock with time units 
determined by how long it takes light to move from the bottom to the 
top of a box. When observing this clock in motion along the horizontal 
axis, the total observed time for the light to reach the top is defined as 
Dt and covers the distance cDt, which includes the horizontal distance 
vDt. In comparison, The dilated time perceived by the moving clock 
in its rest frame is defined as D t̄  and covers the smaller distance cD t̄, 
with no horizontal component. Equations comparing the observed 
time Dt to the dilated time of the clock in motion D t̄ can be solved 
using the Pythagorean theorem. The results show that time is slowed, 
or dilated, when the moving reference clock increases velocity.  

 

 

  
              Dilated Time (D t̄ )             Observed Time (Dt )    

 

            Figure 5-22 Time Dilation in Special Relativity  

                
 

            Time dilation: 

        D t̄ =Dt2	1	–	 v2

 c2 
 
 

Prior to relativity, 
light was assumed 
to move at a 
constant speed 
compared to ether, 
the stationary space 
of the universe. 
Relativity showed 
that there is no 
stationary ether and 
that speed should 
rather be defined by 
the relationships 
between frames of 
reference. Speed is 
a relations-based 
property that is 
relative to each 
frame of reference, 
not absolute.

     cD t̄      cDt̄   

     vDt 

     cDt 
Pythagorean 

Theorem 



 

 

Chapter 5 Equilibrium       79  

     

Time dilation is not merely theoretical, and experiments 
have shown that increasing velocities can slow the flow of time, 
such as slower decay times of particles moving with high 
velocities.94 Similar proofs can be made to show that movement 
also dilates length. For example, a 12-inch ruler moving near the 
speed of light is shorter than a stationary 12-inch ruler. Another 
result of relativity is that increasing speed increases mass. The 
increase of mass means it is impossible to move faster than the 
speed of light because it requires more and more energy to move 
an object that becomes increasingly massive. Relativistic dilation 
shows that time, distance, and mass are not fixed and instead 
change between reference frames in motion. Relativity dismantled 
the notion that space, matter, and time are fixed and absolute, and 
put forth a new system of a relative world.  

Relativity utilizes a 4-D coordinate system, called 
Minkowski spacetime that includes three spatial dimensions and a 
time component (x, y, z, ct). Time is multiplied by the speed of light 
to create units comparable with distance. The Minkowski 
spacetime coordinate system can more easily account for 
relativistic dilation and allows the laws of physics to remain 
consistent for frames in motion. In relativity, classical descriptions 
of length, time, mass, and energy are approximations. Instead, 
relativity expresses conservation laws and quantities that remain in 
equilibrium with four-vectors, with three units of space and one of 
time. Four-vectors drastically simplify electrodynamics and can 
express all Maxwell’s equations in a single compact form. 

Relativity commonly graphs spacetime with lightcone 
diagrams that draw space on one axis and time on another. A 
stationary object would stay in the same place on the horizontal 
axis but move up the vertical axis through time. In contrast, a beam 
of light would move at a 45-degree angle, traveling distance ct over 
time t. In a lightcone diagram, such as that shown in Figure 5-23, it 
is important to note that three spatial axes of (x, y, z) are being 
reduced to one axis. This means every horizontal slice is a volume 
of space at a given time. Lightcone diagrams are particularly useful 
to specify the limits of electromagnetic transfer between points in 
spacetime. For example, a location 15 light-years away from the 
origin point would require a minimum of 15 years to transfer 
information to it. The past lightcone defines the farthest distance 
that can send an electromagnetic signal to be received at an origin 
point over a given amount of time. The future lightcone determines 
the farthest distance that can receive information sent from an 
origin point within a given amount of time.  

Figure 5-23                   
Lightcone Diagrams 
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Curved Spacetime 

          
 

Einstein's subsequent theory, general relativity, extended relativity 
to accelerating reference frames of reference, including gravity. 
Einstein’s field equations propose that spacetime is curved by 
energy and mass which causes the apparent force of gravity. To 
explain curved spacetime, it is useful to first look at curvature in a 
2-D Euclidean plane. Within a flat Euclidean plane, the sides of a 
triangle are straight, and the interior angles sum to 180 degrees. In 
a positive curvature plane, the lines bow outwards, and the angles 
sum to more than 180 degrees. In negative curvature, the lines bow 
inwards. In general relativity, mass causes the curvature of 
spacetime, and bends trajectories toward mass and energy sources.  
 

        
        Negative Curvature       Zero Curvature         Positive Curvature 

Figure 5-24 Curved Space 

 Trajectories in spacetime follow optimal paths of least action. 
Without gravity, an object in motion will travel in a straight line, 
the shortest distance between two points. With gravity, the optimal 
path follows a curved trajectory called a geodesic. Geodesics are 
the shortest paths through curvilinear spacetime and only appear 
curved in a flat space. We see an example of curved trajectories in 
airplane flight paths, which follow a straight line over a spherical 
globe but appear curved on a flat map projection. Another analogy 
of gravity is a heavy ball on an elastic sheet. When a small ball is 
on an elastic sheet, it will be attracted to a large center ball due to 
the curvature of the sheet imposed by the spheres, as seen in Figure 
5-25. Gravity similarly curves paths by distorting spacetime.  

 
 

 
 

Figure 5-25 Curved Spacetime 

General relativity 
utilizes Einstein’s field  
equations to measure 
how mass and energy 
curves spacetime. This 
equation uses tensors, 
which expand  vectors 
to a matrix with μ 
columns and ν rows. 
 

   Gμν + Λgμν = 1Tμν 
 

 
Gμν  is the spacetime 
curvature, which is 
proportional to Tμν , the 
mass, energy, stress 
tensor, as well as the 
constant 4. The term 
Λgμν  is the cosmological 
constant, the curvature 
of empty space, which 
is expected to be 
negative to account for 
dark energy.  
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General relativity allowed for significant 
advancements in modeling the shape of the universe. 
Einstein’s field equations contain a universal constant 
that defines the overall curvature of the universe, which 
was believed to be zero using available data at the time. 
After Edwin Hubble’s discovery in the 1920s that 
distant galaxies are moving away from one another, it 
is now believed that the universe is expanding via dark 
energy, which correlates to a non-zero cosmological 
curvature. Reversing the expanding universe model into 
the past also justifies the Big Bang theory, which 
postulates that the universe originated from a single 
origin approximately 13.7 billion years ago.  

An expanding universe means the universe was 
smaller in the past, which creates a curved lightcone of 
the past. Light observed from 10 billion light-years 
away shows the universe 10 billion years ago, which 
was smaller. This creates a pear-like lightcone in which 
observing farther into space eventually curves to the 
Big Bang singularity, as shown in Figure 5-26. 
Additionally, in every direction of observation—left, 
right, forward, backward, up, or down—farther 
distances will always curve back to the Big Bang. To 
provide a simplified analogy, moving in a straight line 
from any direction at the top of a sphere will always 
lead to the same point at the bottom of the sphere.  

Another aspect of spacetime is that each 
reference frame is the center of its observable universe. 
Regardless of the location of the origin point of a frame 
of reference, the lightcone into the past will expand 
evenly in all directions and creates the effect that each 
observer is in the center of their observable universe. 
The analogy of a sphere can be used again as each 
location of a sphere's surface can be perceived as the top 
and center from its vantage point, with the horizon 
evenly curving away. Additionally, due to dark 
energy’s negative curvature and the expansion of space, 
the observable universe is currently estimated to have a 
radius of 46.5 billion light-years, which is larger than 
how far light could normally travel in the 13.7 billion 
year age of the universe. Relativity presents a new 
geometry of cosmology that drastically transforms 
Euclidean notions of space. 

 
Figure 5-26 Lightcone in 

Expanding Universe 
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Universal Equilibrium   

 

Equilibrium coincides with the core tenant of physics, that the 
universe conserves certain quantities, like energy.95 Following the 
notion that the universe is isolated and all that there is, conserved 
quantities like energy, should not enter or leave, only change forms. 
Conserved quantities in an isolated universe U should be fixed and 
remain in equilibrium, written DU = 0. Another implication of an 
isolated universe is a relationship between the a subsystem X and 
everything not contained in the system (U – X ). If a subsystem is 
closed and does not change conserved measures DX = 0, everything 
outside of X must also not change these conserved quantities. 
Conversely, if a system is open to change DX ≠ 0, everything 
outside must also be open to maintain DU = 0. If conserved 
universal quantities were violated DU ≠ 0, the properties of closed 
versus open subsystems would not be guaranteed. 

 

  
Figure 5-27 Universe with Closed and Open Systems 
 
In modern physical theories the universe is closed to, and 

conserves, some quantities and is open to change in others. The 
universe is expected to conserve total energy, linear momentum, 
angular momentum, electric charge, quantum information, and the 
color charge in the strong nuclear force between subatomic quark 
particles. While mass is conserved in classical physics, following 
modern physics, like E = mc2, it is possible for energy to turn 
directly into mass, changing the total mass. Furthermore, the weak 
isospin in the weak nuclear force, spatial inversion symmetries 
called parity, and types of quarks called “flavors”, are often 
conserved, but can change in certain high-energy processes. Other 
measures are almost never conserved. Thermodynamic entropy 
tends to increase over time in isolated systems and can also be 
reduced in open systems to increase order and concentrate energy. 
Classical (non-quantum) information often increases, degrades, or 
even evolves over time. The complexity, relating to the difficulty 
to predict states, is also open to change over time. 

 
Universe: U 

 
DU=0, for 
conserved 
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 D X = 0 
 

        
       D(U –X) = 0 

   

 
Open System 

 
   

  D X ≠ 0 
 

     
    

    D(U –X) ≠ 0 
 

The universe is 
expected to conserve 
key measures relating 
to the total content 
and energy such as: 
 

Conserved 
 

Total Energy 
Linear Momentum 
Angular Momentum 
Quantum Information 

 
However, measures 
relating the order and 
organization of this 
content can change 
and are not conserved.  

 

Not Conserved 
 

Entropy & Order 
Complexity Measures 
Classical Information 
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Continuum mechanics is a powerful tool to express how 
conserved quantities, like energy or charge, move continuously across 
volumes. The continuum equations state that the change of the 
quantity inside a boundary plus the flux of the quantity over a 
boundary equals zero, as shown in Figure 5-28. For example, when 
the density inside a volume decreases, there must be a positive outflow 
of flux. In three dimensions, the divergence (Ñ⋅) measures the total 
inflow versus outflow and can be used to express continuity as  
¶(Density)/¶t + Ñ⋅(Density Flow) = 0. 96 Many equations in physics, 
from fluid mechanics to electromagnetism, reformulate the continuum 
equation to derive equations of motion. These equations all stem from 
the notion that content can only change within a boundary if there’s is 
a flux—an idea that follows naturally from an isolated universe.  

Universal equilibrium even plays a role in logic. The set of 
possible values, called the universal set U, or domain of discourse, 
should remain in equilibrium. Having a closed domain of discourse, 
DU = 0, is necessary to ensure statements remain valid in a formal 
system. If members of the domain are free to be added or removed, 
then the truth values of a proposition p or negation not p = {U – p} are 
not guaranteed. Equilibrium also relates to logical equivalence, and 
the difference of equal terms is always zero. For example, if a = b is 
true, then it is also true that a – b = 0. Equalities should also remain 
stable in a formal system. This does not mean that every logical system 
is consistent, complete, or free of paradoxes, but that the expression of 
equality “=” should not change.  

Even in models where the physical universe and logical 
domains are closed, there is an extreme variety and potential for 
complexity in open subsystems. Fluxes of energy and matter across 
subregions can support high levels of change and organization, as seen 
in living systems. A closed physical universe or logical domain does 
not limit the complexity of any particular subsystem within it, but 
instead ensures that the conserved quantities remain at equilibrium.  

 
Summary 

 

Equilibrium, the principle of least action, and conservation laws are 
critical tools for analyzing physical systems. These principles are 
essential for generating models to describe electrodynamic fields, 
gravitation, thermodynamics, fluid dynamics, quantum probability 
fields, and relativistic spacetime. Equilibrium also plays a role in 
understanding models of the physical universe and logical domains. 
Subsequent chapters will explore systems that are not in equilibrium.  
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Chapter 6 Flux  
 

 
 

 
It is often said that change is the only constant. Models of equilibrium, 
where no force or energy is exchanged, only provides a small piece of 
the larger, dynamical, picture. Compared to systems at rest, the 
patterns resulting from systems in flux can be much more intricate and 
complex. Modeling systems of flux can bring insight to natural 
phenomena like light, sound, and the microscopic vibrations within 
matter itself. This chapter will explore common patterns of flux 
including growth, diffusion, waves, and nonlinear dynamics. More 
generally, these examples are part of a class of systems where the 
change of a quantity DX does not equal zero and is not in equilibrium, 
shown in Figure 6-1.  

 
 

S :{DX ¹ 0 }  
 

Figure 6-1 Equation of Flux 
 
Flux is essential to understanding systems, connectivity, and 

complexity. Systems of flux, and particularly those that are nonlinear, 
can generate chaotic unpredictability and complex patterns. This can 
be seen in open thermodynamic systems, like convection patterns, 
tornados, cyclones, and other forms that would dissipate without 
energy inputs. Living systems are another particularly complex 
system that requires an open flux of matter and energy to maintain 
organization and homeostasis. Highly complex systems can be 
enabled by the open exchange of energy, mass, and information. 

Systems in nature 
are continually in 
motion. A flux 
disturbs a state of 
equilibrium, like a 
splash in a steady 
pool.  
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Types of Flux 

 

Systems of flux fall into broad categories. One category is linear 
change that grows or decays at a constant rate, or progressively moves 
towards an equilibrium. An example of a linear flux is the increase of 
entropy, which is the steady tendency for energy to disperse and order 
to decrease over time. Another category is cyclical fluxes, like a 
pendulum swinging back and forth. These oscillating fluxes are often 
modeled with waves. It is also possible for nonlinear and semi-cyclical 
patterns to form within an open flow of energy. The nonlinear patterns 
of a vortex or a tornado, for example, are highly complex and cannot 
be explained in linear terms. These broad classes of change in systems, 
summarized in Figure 6-2, will be explained further throughout the 
chapter.  
 
 

          
       Linear Flux                    Cyclical Flux                   Nonlinear Flux 

Figure 6-2 Types of Flux 
 

Dynamic equilibrium is another interesting type of flux, 
which is created when a continuous change enables a stable form. 
Chemical reactions exist in dynamic equilibrium when the rate of a 
forward reaction is equal and balanced to the reverse reaction. For 
example, molecules in a glass of water are in constant flux, splitting 
into hydrogen hydroxide ions (H2O → H+ + OH) and recombining 
(H+ + OH- → H2O). When the rates of splitting and recombining are 
equivalent, the liquid water will maintain a stable average chemistry, 
even though reactions are continuously occurring. Thus, a dynamic 
equilibrium is achieved by through a balance of an influx and outflux.   

Dynamic equilibrium is a core concept for physical and 
biological systems to maintain themselves within a constant flux. In 
living systems, the ability to maintain homeostasis and biological 
structure is only achieved through the delicate balance of water, food, 
oxygen, and trace minerals. Dynamic equilibrium also plays a critical 
role in sustainable systems. If a system extracts too many resources it 
can deplete the environment, but extracting too few resources will not 
sustain the system itself. The goal to maintain a dynamic equilibrium 
is a common feature of systems across many disciplines.   

Flux can occur in 
closed and open 
systems depending 
if a measure is 
conserved XC or 
not conserved XNC. 
In an open system, 
both XC  and XNC 
can be in flux. In a 
closed system only 
XNC  can be in flux. 
For example, a 
system closed to 
total energy can 
change kinetic 
energy if the 
potential energy 
changes.  
 

DEnergyTotal
   = 0 

DEnergyKinetic
   ¹ 0 

DEnergyPotentail
   ¹ 0 
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Growth and Decay 
 

Growth and decay are patterns of dynamic systems that 
arise when the flux rate is proportional to the amount of 
content. This relationship can be expressed as a formula 
where the change of x over time, dx / dt, is equal to the 
amount of x multiple by a constant, written dx / dt = kx. 
When the constant k is greater than zero, the system will 
grow, and if the constant is less than zero, it will decay, 
as displayed in Figure 6-3. The growth equation can be 
expressed through the exponential term (e ≈ 2.718…), 
in the form xt = x0ekt, which is why this formula is also 
referred to as exponential growth. 

The growth and decay equation can model 
many systems, such as how the value of an investment 
account will increase as the result of continuously 
compounding interest. A greater quantity of money, or 
x, leads to greater returns for a given rate. The growth 
equation can also be used to model how a population of 
x grows with a constant rate of change. A greater 
population of x leads to more growth. Decay (negative 
k values) works in the opposite way: a given quantity 
will decrease and approach zero over time.  

A growth and decay relationship can be 
combined to create a balancing equation similar to self-
regulating populations of prey and predators. The 
predator-prey equations, that are further detailed in 
Figure 6-3, provides a model of balancing interactions 
between a population of prey as x and predators as y. 
When there are more prey x, there are more 
opportunities to feed more predators, but when there are 
more predators y, there are more agents to reduce the 
number of prey. This equation results in oscillations 
where the two population sizes balance with one 
another over time.97  

While ecological systems do resemble some 
patterns of the balancing, growth, and decay equations, 
there are limitations. In realistic scenarios, chaotic 
events and the interactions of many species mean that 
these models are insufficient. With that said, these 
equations show how simple growth and decay forces 
can synergistically balance in a collective ecosystem.  

             dx / dt = ax + bxy 
             dy / dt = cy + dxy 

Balance:  a & d > 0, b & c < 0 

Figure 6-3 Growth, Decay and 
Balance Equation for Systems 

  Decay:  dx / dt = kx      k < 0    
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  Growth:  dx / dt = kx      k > 0    
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Diffusion 

  

Diffusion is a type of flux that describes many natural systems, 
such as the spreading of gases, liquids, or heat into a surrounding 
space.98 Diffusion can be seen when concentrated molecules of dye 
pigment in a glass of water disperse over time until there is a 
uniform distribution, as shown in Figure 6-4. Similarly, heated air 
or a spray of perfume will tend to distribute itself throughout a 
room. The movement pattern of diffusion is for a substance to 
spread in all directions evenly, unless influenced by other forces. 
Over time, diffusion eventually settles into a dynamic equilibrium, 
where the average collective concentration is uniform, even though 
the individual particles are in random motion.  
 

 

 
 

Figure 6-4 Diffusion of Dye in Bowl of Water 
 

Diffusion can be modeled with a field V that defines the 
magnitude of a concentration at each x, y, z point. While random 
collisions can create microscopic variations, these smooth fields can 
serve as emergent models for macroscopic averages. In the diffusion 
equation, shown in Figure 6-5, the rate of change over time (¶V/¶t), 
or speed of the field, is proportional to the second order derivative 
over space (Ñ2V), which is geometrically the sharpness of local 
maximums. Sharp changes to concentrations spread apart faster, 
while smoother concentrations move more slowly. The diffusion 
coefficient a describes how fast a medium diffuses, which can be 
influenced by temperature, viscosity, and other factors.99  As the 
system approaches uniformity, the rate of diffusion approaches zero 
and the concentration reaches a state of equilibrium. When the 
change over time (¶V/¶t) equals zero, the diffusion equation then 
simplifies into the Laplacian Ñ2V = 0.   

 
 

(Speed of Field)       ¶V/¶t = aÑ2V     (Sharpness of Local Max) 
 

Figure 6-5 Diffusion Equation 

Diffusion creates a 
pressure gradient 
when different 
concentrations come 
into contact along a 
porous boundary. 
Diffusion pressure is 
used by cells to 
regulate chemical 
concentrations 
across membranes. 
For example, a cell 
with salty internal 
water will have a 
pressure to absorb 
outside fresh water. 
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Waves and Harmonics 
 

Waves describe systems that oscillate, or repeat, over time. 
The most basic wave is simple harmonic motion, which is a 
steady back and forth movement. Waves can be modeled 
with the restoring force equation where the force F is 
inversely proportional to the displacement from equilibrium, 
written F ∝ -x. 100  A swinging pendulum with a resting 
location at x = 0 provides an example of simple harmonic 
motion. When the pendulum moves to the right (x > 0) there 
will be a force in the left direction (Fx < 0), and when the 
pendulum moves to the left (x < 0) there will be a force in 
the right direction (Fx > 0). This restoring force creates a 
wave, which has a specific wavelength (distance from peak 
to peak), amplitude (height of a peak), and frequency (rate of 
oscillation). Solutions to the wave equation include the 
trigonometric functions of sine, cosine, and exponentials.   
 

                    
  

Figure 6-6 Waves, Pendulum, and Spiral  
 

The wave equation can also be represented in a 
differential form, with a field V in the x, y, and z axes. In 
contrast to diffusion, where the first order derivative (¶V/¶t), 
or speed of the field, is proportional to the sharpness of the 
concentration (Ñ2V). In the wave equation, it is the second 
derivative (¶V/¶t2), or acceleration of field, that is 
proportional to the sharpness of concentration (Ñ2V). This 
creates the effect that a concentration will oscillate around an 
equilibrium, following F ∝ -x. The wave equation also has a 
constant k, which equals the wave’s velocity squared.  

 
(Acceleration of Field)    ¶V/¶t2 = kÑ2V     (Sharpness of Local Max) 

Figure 6-7 Wave Equation 
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Waves can be represented 
with the exponential e  and 
rotation θ along the real axis 
and imaginary i = √-1 axis. 
 
 
 
 
 
 

 
 
 

 
The spiral motion of the 
exponential produces a 
cosine wave on the real axis 
and sine wave on the 
imaginary axis, based on 
Euler’s identity of  
eiθ = cos θ + i sin θ. 
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Sound, which is the oscillation of 
molecules, can be modeled with waves. 
After striking a tuning fork, for example, 
compressed regions of air propagate to 
create sound. Sound is a longitudinal 
wave, which means that the wave travels 
in the direction of motion, unlike a 
transverse wave, which is perpendicular to 
motion, likes waves on a string.101 Sound 
waves can be efficiently dispersed in 
resonation devices, like instruments. 

Waves can be broken down into 
different standing wave patterns, called 
harmonic modes. Figure 6-9 displays the 
1st to 5th modes m of a linear string and a 
circular loop. Harmonics only exist in 
whole number intervals because intervals 
like 1.5 do not generate standing waves 
with fixed end points. Multiple harmonics 
can be superimposed to create waves 
within a wave. The summation of simple 
modes creates musical harmonies like 
octaves, fifths, and chords.  

Any complicated waveform can be 
represented as a summation of harmonic 
modes, called a Fourier transform. For 
example, a square wave can be closely 
approximated with just five smooth 
waves, as depicted in Figure 6-11. By 
adding waves ad infinitum, any repeating 
pattern can be matched. The Fourier 
transform is an extremely powerful tool in 
physics and engineering.  

Human sensory organs are well 
adapted to parsing wavelike information 
from the environment. Hair follicles in the 
inner ear are sensitive to different isolated 
sonic frequencies. Similarly, the retina of 
the eye contains cone receptors that are 
sensitive to specific frequencies of 
electromagnetic waves, which humans 
observe as visible light and colors. 

Figure 6-8 Tuning Fork Sound Waves 

Figure 6-9 Wave Harmonics 

Figure 6-10 Wave Superposition  
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Figure 6-11 Fourier Transform  
 
Simple harmonic waves can describe many systems found in 

nature. For example, the number of daylight hours available over the 
course of a year follows a periodic pattern as the Earth makes its 
revolution around the Sun.102 This can be graphed as a wave with a 
period of one year, with a peak at the summer solstice and trough at 
the winter solstice for locations in the Northern Hemisphere. A wave 
graph can also represent the cycle of phases of the Moon. These waves 
are due to the cyclical orbits of the Earth and Moon. The tides in the 
ocean even follow combinations of periodic waves that have daily, 
monthly, and other overlapping cycles. Figure 6-12 shows the periodic 
cycles of the Sun, Moon, and tide data for a month.  

 

                        
Daylight Cycle in Northern Hemisphere (365.3 Days)             Phase Cycle of Moon  (29.5 Days) 

 

Figure 6-12 Harmonic Cycles of Sun, Moon, and Tides  
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Surface and Volume Waves 

 

Solutions for wave harmonics depend on the 
shapes and dimensions of the system. For 
example, a circular surface has harmonic 
modes along the radial axis r and the angular 
axis q, written (r mode, q mode) in Figure 6-13. 
On a square plane, the different modes (x mode, 
y mode) indicate harmonics along the width x 
and height y. Figure 6-14 represents the 
different standing waves of a square plane as 
dark dips and light bumps that oscillate back 
and forth.  

Surface harmonics can be represented 
with nodal lines, which are the places that 
remain constant as the wave oscillates. Nodal 
lines can be physically demonstrated by 
sprinkling sand on a vibrating surface. Sand 
tends to avoid vibrating locations and settles 
into the nodes in a process called cymatics.103 
In addition, surface waves can be superimposed 
to create more complicated patterns. 

 
 

 
              

      (1, 1)                   (2,1)                    (1,2)                     (2,2)                     (3,2)                   (3,3)                        

   (1, 1) + (3,3)         (2,1) + (4,4)        (3,2) + (4,5)       (5,7) + (5,6)        (5,5) + (7,7)        (3,3)+(9,9)  

 (1,5)+(3,3)+(5,1)    (3,7)+(5,5)+(7,3)      (3,4)+(5,3)+(7,6)   (5,13)+(8,8)+(13,5)  (3,3)+(5,5)+(9,9) (3,11)+(9,9)+(11,3)  

Figure 6-14 Harmonics of a Square Surface 

Figure 6-13 Harmonics of a Circular Surface 

       (2,1)                  (2,2)              (1,1)+(2,2)  

       (2,4)+(4,1)       (3,5)+(5,2)       (3,1)+(4,2)    

     (1,2)+(3,4)       (2,4)+(4,2)       (5,5)+(9,9)   

(r mode, q mode) 

(x mode, y mode) 
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Harmonic modes can be extended into three dimensions. 
Within a cube, the wave modes are defined along the x, y, and z axes. 
The darker regions in the cubes are nodal surfaces, where the waves 
do not oscillate. Sound waves in volumetric spaces can even generate 
3-D cymatic patterns. 104  Spherical harmonics are another type of 
volumetric wave and have applications to modeling electron orbitals 
and even the cosmic microwave background, which are small energy 
fluctuations observed across the universe.105 Volumetric waves can 
also be superimposed into more complicated combinations.  

 

 
 

Figure 6-15 Harmonics of a Cubic Volume 

 

Light Spectrum 
 

Waves provide a way to model light, which is an energy transfer 
process in the electromagnetic field. Light occurs when electric and 
magnetic fields continuously self-induce one another and travel along 
a direction of motion. In light waves, the electric and magnetic fields 
oscillate at perpendicular angles and are synchronized, or in phase. 
Electromagnetic waves can vary in frequency, wavelength, and 
energy, but all maintain a constant speed c around 3´108 m/s.106  
 

 

 
 

 
 
 
 
 

Figure 6-16 Electromagnetic Waves 
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The wave nature of light can be seen in phenomena 

like refraction and dispersion. As a wave passes through a 
medium that alters the wave’s speed, the angle of motion will 
change in a process called refraction. Lenses use refraction 
to direct light toward a focal point and are utilized in 
telescopes and the human eye to clarify images. Higher 
frequencies bend at a more acute angle, which is called 
dispersion. Dispersion is beautifully displayed in a prism 
which separates white light into different frequencies and 
colors. Dispersion also enables water droplets to reflect light 
into a rainbow.107 While refraction and dispersion are most 
visible with light, these properties also apply to waves in 
other mediums, like air or water.  

Light exists over a wide spectrum of energy levels 
and wavelengths. Shorter wavelengths of light have higher 
energy compared to longer wavelengths. A summary of the 
electromagnetic spectrum is displayed in Figure 6-19. The 
wavelength of light also alters the scale of phenomena it will 
be influenced by. For example, short wavelength gamma 
rays are diffracted (bend around corners) at atomic scales, 
while long wavelength radio waves diffract across geologic 
scales. Visible light, which contains the observable colors, 
exists at the intramolecular scale, between the size of 
molecules and biological cells.  

 

 
 

Figure 6-19 Electromagnetic Spectrum 
 
The visible spectrum is the most abundant wavelength that the 

Sun produces and is critical in biological systems. For example, plants 
use these wavelengths for photosynthesis and the human eye detects 
visible wavelengths. Plants and animals also emit a small quantity of 
photons in and near the visible spectrum, called “biophotons,” that are 
generated via metabolic activity and may be related to cellular 
communication. 108  Light waves provide a method of transferring 
energy and information, and they are essential in living systems.  
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Figure 6-18 Dispersion in Prism 
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Figure 6-17 Refraction in Lenses 
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Wave-Particle Duality 
 

Quantum mechanics, introduced in the early 20th century, provided a 
revolutionary model of nature. An idea within quantum theory is that 
light has both wave and particle properties, called the wave-particle 
duality. For example, even though light refracts in lenses like a wave, 
other properties, such as the photoelectric effect whereby light excites 
electron energy levels, can only be explained if light moves as discrete 
packets of energy.109 In quantum mechanics, discrete units of light, 
called photons, are packets of energy with both wave and particle 
properties. The energy E of a photon is proportional to frequency f and 
Planck’s constant h, a commonly used constant in quantum physics. 
 
 

 
 

Figure 6-20 Energy Quanta 
 

Wave-particle duality of quantum mechanics is not limited 
to photons. Louis de Broglie proposed that all physical systems have 
a wavelength equal to Planck’s constant divided by momentum. 
Planck’s constant is extremely small, so only something with very 
small momentum, like an electron, can have a noticeable wavelength. 
Yet, following quantum mechanics, all physical systems have a wave 
component. The wave-particle duality also leads to the uncertainty 
principle, which asserts that there are unavoidable inaccuracies in 
measuring the position and momentum of matter due to its wave 
properties. Quantum physics showed the harsh limitations of a purely 
particle-based interpretation of nature.  

  The double slit experiment provided a critical experiment to 
understand the wave-particle duality. As waves pass through two slits, 
they create an interference pattern of oscillating peaks. In contrast, 
when particles diffract through two slits, they create a two-peak 
distribution, as shown in Figure 6-21. A surprising result of the double 
slit experiment is that even when one electron at a time is passed 
through the slits, an interference pattern is still produced after many 
iterations. This seems impossible because it would require a single 
electron to interfere with itself and exist in more than one place at a 
time. This phenomenon is modeled in quantum mechanics through 
probability fields. The electron’s probability wave passes through both 
slits to interact with itself and create interference. The electron only 
has a well-defined location, within the bounds of the uncertainty 
principle, when there is an interaction and measurement event.   

Figure 6-21 Double 
Slit Experiment 

E = h ∙ f 
    Energy of Photon                        Wave Packet                        

 

Particles peaks 

Wave interference 
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Even more baffling, when instruments are placed to 

measure which slit the electron passes through, the resulting 
pattern resembles particles. By measuring the probability 
field of the electron in one of the slits, the field collapses and 
does not cause interference. Thus, wave-particles behave 
like waves when not interacting and like particles when 
observed via interaction. The surprising results of quantum 
physics led scientists to dismantle the notion of perfectly 
defined locations and momentums.  

Waves play a crucial role in atomic systems. In an 
atom, electrons stabilize in a standing wave around the 
nucleus. The harmonic mode, or orbital level, of the electron 
also determines its energy. An electron can drop to a lower 
orbital level by emitting a photon of energy or rise to a 
higher orbital level by absorbing a photon of energy. In 
Figure 6-22, the second and third electron energy modes E2 
and E3 are depicted with an energy transfer via a photon. 
This figure follows the Bohr model of the hydrogen atom, 
where negative electrons exist in discrete energy modes 
around a positive central nucleus.  

 
 

 
 

 

Figure 6-22 Electron Orbital Photon Emission and Absorption 
 

Electron orbitals in atoms and molecules can be 
more precisely modeled using spherical wave harmonics. 
These spherical harmonics have different energy levels, or 
radial modes, as well as angular modes, broken down into 
the s, p, d, and f orbitals. The s orbital is spherically 
symmetric, while the other orbital geometries contain other 
angular symmetries, as seen in Figure 6-23. Electrons that 
surround an atom will tend to fall into the lowest energy 
mode, unless that orbital is pre-occupied with another spin 
up and spin down electron. The p, d, and f orbitals can also 
have different orientations on the x, y, and z axes, producing 
a variety of geometric patterns. The spherical harmonics of 
electrons provide insights for why particular patterns arise 
in atomic and molecular systems. 
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E3 – E2 = DE = h · f 
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In contrast, a quantum wave 
cannot exist in a ½ energy 
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micro effects. Quantum 
waves present results that 
are inherently probabilistic 
and discrete.  
 
 

 
 
 
 
 

 
  
 

Quantum Waves 
 
 

 

 50% 
                    Energy  
 

 
 

100% 
Probability 

 

 

 

    45 Degrees 
 
 
 
 

Polarizer 
 

 

 100% 
                    Energy  
 
 
 
 

 
 

50% 
Probability 

 

 

    45 Degrees 
 
 
 
 

Polarizer 
 



 

 

Chapter 6 Flux       97  

     

 
 

 (Energy Level (1-5), Orbitals (s, p, d, f), Number of Orientations of x, y, z axes) 

Figure 6-23 Electron Orbital Diagrams  
 
 

Spherical harmonics play a crucial role 
in chemistry. The periodic table of elements is 
organized according to how the s, p, d, and f 
orbitals are filled when electrons balance the 
charge of the atom. When a given energy level 
is filled, the atom is less reactive. The so-called  
“noble gases” in the rightmost column (helium, 
neon, argon, …) have filled electron energy 
levels and are the least reactive. In contrast, 
atoms with partially filled orbital levels tend to 
bond with other atoms to complete an energy 
level, driving many kinds of chemical reactions.  

Harmonic energy levels even determine 
the shapes of molecules, such as the tetrahedral 
geometry of methane. A neutral carbon atom has 
four electrons in the outer energy level. In a bond 
with other atoms, such as four hydrogen atoms, 
the electrons in s orbital and p orbital create a 
hybridized sp3 state. The resulting four sp3 bonds 
move away from one another and form a stable 
molecule with tetrahedral geometry.  

 

 

 
 

 

Figure 6-24 Orbital Hybridization and Molecular Bonding  
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A particularly interesting wave-based phenomenon that can 

occur in nature is coherence. Coherence occurs when waves are in 
phase with each other, meaning that the waves are synchronized and 
have the same frequency. For example, light waves in lasers are all in 
phase and in coherence. Usually light spreads out, but a laser beam 
moves in a straight line due to coherence, as shown in Figure 6-25. 

 

 
Figure 6-25 Coherence in Laser Light 

 

Matter, which also has the properties of waves, can exist in 
states of coherence that create novel properties. For example, when 
certain compounds are lowered in temperature, all the electrons can 
enter a coherent state to create superconductivity, which allows the 
transfer of electricity with zero resistance. 110  Liquid hydrogen at 
supercool temperatures can move with zero viscosity.111 Even though 
these coherence properties occur from the quantum wave nature of 
matter, the effects can be observed at the macro-level. For example, 
all the atoms in a neutron star enter the lowest energy level, called a 
Bose-Einstein condensate, producing a macroscopic mass sharing a 
single quantum state.112  
 

Nonlinear Flux 
 

An important distinction in fluctuating systems is linear rates of 
change versus nonlinear rates of change. Linear algebraic 
equations can be graphed as a line, like f (x) = x + constant, while 
nonlinear curves are raised to the second or higher power, such 
as f (x) = x2. Linear equations follow superposition and add in a 
linear fashion, meaning f (a) + f (b) = f (a + b). For example, the 
equation, f (x) = x, is only to the first power and follows the law 
of superposition, such as f (1) + f (2) = f (3) → 1 + 2 =  3. This 
linearity enables the function to be easily added together and 
superimposed. In contrast, nonlinear equations cannot be added 
as simple summations. The equation f (x) = x2 is nonlinear and 
doesn’t follow superposition as f (1) + f (2) ¹ f (3) → 12 + 22 ¹ 32. 
Nonlinear systems can lead to complexity and unpredictability 
because the behavior of collections is not equal to a summation 
of the behavior of the parts.  
 

 

In a nonlinear function, 
the function of the 
whole f (a + b) does not 
equal the sum of the 
function applied to the 
parts f (a) + f (b)  

Linear: 
f (a) + f (b) = f (a + b) 

 

Nonlinear: 
 f (a) + f (b) ¹  f (a + b) 

Laser 
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Nonlinearity can be applied to classify differential 
equations, which use derivatives to measure rates of 
change. In linear differential equations, such as gravitation 
force, the rate of change can be summed following 
superposition. Even though the gravitational force 
equation has a squared term (F ∝ 1/x2), the gravitational 
potential energy (PE ∝ 1/x) at one instant in time can be 
summed up in a linear fashion.  

In contrast, nonlinear rates of change do not easily 
sum up and create complex results. For example, nonlinear 
equations are required to model how a wave curls in 
shallow water, in part due to the fact that waves move at 
different speeds at the water and air boundary, creating 
dispersion. 113  Other nonlinear forms of fluids include 
cloud formations, smoke plumes, and turbulent motion. 
Nonlinear patterns can be highly sensitive to initial 
conditions that lead to vastly different large-scale 
outcomes, known as the butterfly effect. Properties of 
nonlinear equations include chaos, sensitivity, phase 
changes, multi-stability, and others in Figure 6-26.  

Nonlinear equations can be difficult or impossible 
to solve. While nonlinear equations can typically be 
computationally approximated, there is often no analytical 
method to perfectly predict future states. Most of the 
physics that describes realistic scenarios, like fluid 
turbulence or the trajectories of many bodies under gravity, 
are nonlinear. Nonlinear rates of change create an obstacle 
to fully predict nature through efficient equations. 

Nonlinear rates of change occur in diffusion-
reaction systems, which model the diffusion of multiple 
substances with a balancing reaction on the shared 
boundary, such as {more x → more y, more y → less x}. 
The normal diffusion equation is linear, and the rate of 
change is only proportional to one variable. However, two 
substances diffusing under a boundary reaction can create 
nonlinearity. From a random start, the substances diffuse 
into self-organizing shapes, called Turing patterns, that are 
strikingly similar to fish skin, cat fur spots, zebra stripes, 
and other living systems.114 Diffusion-reaction equations 
show how intricate patterns can develop from simple 
starting conditions and they may play a role in driving the 
organization of living systems.  
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Figure 6-27  
Diffusion-Reaction  

Figure 6-26 
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Open Flux Forms 

  

The types of flux considered thus far, such as diffusion and waves, 
model changing patterns within thermally isolated systems tending 
towards equilibrium or cyclically repeating. However, particularly 
interesting patterns of flux occur in systems that are open and 
continuously exposed to input energy, creating a state of 
thermodynamic non-equilibrium. Systems exposed to an open 
source of energy and matter exchange are often nonlinear and 
reveal a variety of complex patterns.   
 Convection currents are a common pattern in systems 
exposed to heat inputs. Convection currents can be seen in a pot of 
water on a hot stove. Regions of hot water will rise to the top to 
release heat and regions of cold water will sink to the bottom to 
gain heat. Convection currents often create toroidal, donut-shaped, 
cycles as certain regions rise and sink. Convection currents occur 
in Earth’s atmosphere, oceans, and magma flow driven by the 
Sun’s heat or Earth’s hot mantle and core, as displayed in Figure 
6-28. Earth's convection currents influence weather, wind 
direction, volcanoes, and tectonic drifts. Convection currents can 
also form semi-stable circular pockets, called Bénard cells, when 
dissipating heat. The surface of the Sun has Bénard cells that last 
an average of about 15 minutes.115 These convection patterns and 
cells arise to effectively dissipate heat.   

 

                
            Convection Currents on Hot Plate                                                       Bénard Cells 

   
 

     Convection Currents in Atmosphere                            Convection Currents in Earth’s Mantle  

Figure 6-28 Convection Currents 
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Semi-stable, dissipative, patterns can form in systems 
exposed to an open flux of matter and energy. For example, a vortex 
of water can maintain its shape through the continuous motion of 
fluid and will collapse when the flow is stopped. Semi-stable forms 
that require an open flux are called dissipative systems, because 
these forms will dissipate over time without energetic inputs. 
Tornadoes, which are vortices of air, is another dissipative system 
that are enabled though a continuous flow of matter and energy in a 
state of thermodynamic non-equilibrium. Dissipative systems exist 
between two seemingly opposing elements, as stability is achieved 
through flux. Dissipating systems are essential to understand 
structures that maintain a consistent pattern within a flow of energy 
or materials, including living systems.  

 

                    
        Water Vortex                       Tornado                          Cyclone                          

Figure 6-29 Dissipative Systems 
 

Summary 
 
Flux is a critical concept to understand how natural systems change 
over time. One important categorization of flux is that some systems 
of change are linear, like exponential growth, diffusion, and harmonic 
waves, which can be superimposed in a simple fashion and have 
predictable solutions. Other patterns of change, like turbulence, 
convection currents, and dissipative structures, are nonlinear and can 
be difficult or impossible to perfectly solve, showing chaos and 
unpredictability. The following chapters will build on this foundation 
of flux to consider more complex and interconnected systems.  
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Chapter 7 Symmetry  
 

 
 

 
Symmetry identifies repeating patterns, providing insights into the 
underlying structure and relations of systems. Symmetry is defined 
as a given transformation, noted →, that maps an object X back to 
itself, as shown in Figure 7-1. For example, an image with vertical 
bilateral symmetry will be transformed to the same initial image 
when flipped left to right. Symmetrical mappings also express a type 
of equilibrium, as the change from the initial to final state is zero.  
 

 
S :{X → X } 

 

Figure 7-1 Equation for Symmetry 
 
Many natural systems contain symmetrical patterns, 

including crystals, plants, and animals. These symmetries are often 
based on radial changes (rotation of objects) or translational changes 
(movement of objects over a distance). Symmetry depends on the 
which transformations are considered, and some symmetries only 
occur when constraining or expanding sizes, dimensions, as well as 
considering non-intuitive mappings. Symmetry beautifully displays 
emergence and provides a higher-level description for how an object 
repeats, losing the lower-level detail of what the object is. The same 
symmetry, like bilateral symmetry, can apply to many different 
objects. Symmetry provides an indispensable tool to understand the 
structure and relations between elements in a system.   

 

Flowers often 
bloom in a near 
radial symmetry 
around a center 
point to optimize 
structure and 
functionality. 

An equilateral 
triangle repeats, and 
is symmetric, over ⅓ 
turns. This rotation 
returns the triangle 
to the orginal shape. 
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Circular Symmetries 

 

Circular patterns are a common symmetry of systems. A circle is a 
closed curved path of points on a plane that maintain a constant 
distance from a center point, which means it is identical as it rotates 
and symmetrical for any radial turn. Approximate circles can be seen 
in many natural patterns, such as the silhouette of the Moon or Sun, as 
well as cross sections of plants, as shown in Figure 7-2.  
 

 

                                   
      Circular Outline of Moon        Circular Rings in Onion          Circular Rings in Beet Slice 

              Figure 7-2 Circles in Moon, Onion, and Beet 
 
The sphere is a higher dimensional analog to the circle that 

extends a fixed radius to a 3-D volume. Both the circle and sphere 
have important connections to maximally optimal forms. The circle 
encloses the largest 2-D area through the shortest 1-D curve, and the 
sphere encloses the largest 3-D volume with the least 2-D surface area. 
Due to this optimal geometry, approximate circles and spheres often 
occur in natural systems that follow the principle of least action.   

Another category of radial symmetries is to divide rotations 
into equally spaced symmetries. For example, two-fold symmetry 
splits a circle into two equal parts, three-fold symmetry splits a circle 
into three equal parts, and so forth. These fold symmetries correspond 
to the vertex points of the regular polygons, such as the triangle, 
square, pentagon, and hexagon. Fold symmetries break a seamless 
circle into distinct modes that remain identical through specific 
rotations, like ½ turns, ⅓ turns, ¼ turns, and so on.  

 
 

              
                   Two-fold                Three-fold                  Four-fold                Five-fold                    Six-fold 

Figure 7-3 Fold Symmetries of a Circle 
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Symmetrical folds can be observed in many natural 
systems. For example, animals often have a bilateral symmetry, 
meaning that there is a left and right reflection along a central axis. 
This is seen in bilateral vertebrates as well as invertebrates, like 
crustaceans. Higher circular-fold symmetries can arise in natural 
systems, like a four leaf clovers, five-pointed starfish, six-fold 
snowflakes, or the eight-fold juice sacs inside an orange. The 
chemical base pairs that make DNA helix structures also have fold 
symmetries when projected to a plane, including 10-fold, 11-fold, 
and 12-fold symmetries. 116  Symmetrical structures serve as a 
useful tool to efficiently pack and fill space, as well as interact with 
the environment in a balanced fashion.   
          

                        
                        Bilateral Symmetry          Four-Fold Flower             Six-Fold Snowflake                      

                Figure 7-4 Fold Symmetry in Nature 
 
 

Circular and fold symmetries are a common element of 
architecture and urban design. For example, many cities have 
plazas which configure surrounding buildings into approximate 
circles, creating an efficient space for people to gather in a central 
location. City hubs often tend to expand in concentric circle-like 
formations around focal points of commercial and residential 
activity. Bilateral and four-fold symmetry is another common 
pattern in modern cities. These rectilinear grids create efficient 
packings of square buildings and enable effective transportation 
routes for vehicles. These simple fold symmetries are often 
combined and juxtaposed to create complex designs in architecture 
and city design.   
 
 

 
 

                     Circular City Grid              Rectilinear City Grid                             
 

    Figure 7-5 Symmetries in City Planning  

 

 

 

 
Matrices contain a set 
of values written in 
rows and columns. A 
symmetrical matrix is 
square and remains 
the same when 
flipped diagonally, 
called a transposition.  
 
   1     2     3     4  
   2     1     0     5 
   3     0     1     6  
   4     5     6     1  

  
    Symmetrical axis 



 
106        Part II - Theory     

 
Packing Circles 

 

Another spatial symmetry occurs when packing circles together 
around a center point in a circular arc. As shown in Figure 7-6, these 
circle packings follow the same arrangement as the regular polygons 
(equilateral triangle, square, pentagon, and hexagon) because each 
circle radius is constant and corresponds to equal edge lengths. 
Hexagon packing is unique as it creates just enough space for a 
seventh interior circle to fit inside the surrounding six with little lost 
space. Due to this snug fit, the hexagon pattern is the most efficient 
packing of circles on a plane.117 Hexagon packings are used in natural 
systems like honeycombs and carbon nanotubes, which arrange 
materials in highly space efficient forms. 
 
 

  
 

Figure 7-6 Circular Packing and Polygons 
 
Circle packings and their associated polygons can be 

symmetrically repeated on a plane in a tessellation, or tiling. Periodic 
tilings have translational symmetry, meaning that patterns repeat 
when moving along a directional axis. It is possible to make regularly 
repeating tilings of triangles, squares, and hexagons, as shown in 
Figure 7-7. Five-sided pentagon tilings present unavoidable empty 
gaps, but can be arranged with other shapes into tilings, such as 
aperiodic (non-repeating) tilings corresponding to Penrose tiles.118 
Polygons with seven or more sides also have unavoidable empty gaps 
but can be combined with other shapes to make space-filling tilings. 

 
 

 
                                   Triangle                            Square                          Pentagon                            Hexagon 

      Figure 7-7 Regular and Pentagon Tiling  
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An interesting pattern utilizing the golden ratio emerges when 
packing numerous circles as close as possible around a central point. 
In this pattern, each n circle exists at the location of √n radius (√1, √2, 
√3, …) and at the ϕn angle (1ϕ, 2ϕ, 3ϕ, …). The golden ratio angle ϕ 
is defined where two curved length segments follow the golden ratio: 
a / b = (a + b) / a. This angle allows circles to stack in an optimal 
arrangement with little spacing between the circles. The golden ratio 
angle naturally occurs in many plants to maximize sunlight collection 
as leaves grow. Beyond a flat plane, the golden ratio packing (with 
different radius relations) provides optimal packing arrangements of 
circles on curved surfaces, like domes and cylinders, and can 
approximate plant growth on curved surfaces.  
 

 
 
 
 
 
 

 
              

 
 

 

Figure 7-8 Golden Ratio Spiral Packing Pattern 
 

 

 The number of clockwise and anti-clockwise 
spirals in the golden ratio packing pattern corresponds to 
the Fibonacci numbers. The Fibonacci sequence is 
produced by summing the two previous terms for the 
subsequent term, following {0, 1, 1, 2, 3, 5, 8, 13, 21, …}, 
and the sequence approaches the golden ratio when 
comparing adjacent terms. The number of spirals in the 
golden ratio packing forms follow Fibonacci numbers, 
like the 21 and 13 anti-clockwise spirals in the sunflower 
and pinecone on Figure 7-9. Mathematical models 
provide deeper insight into the mechanism of the golden 
ratio packing. Interestingly, when modeling plant growth 
hormones through a set of nonlinear differential 
equations, the golden ratio packing patterns and 
Fibonacci numbers emerge as optimal solutions. 119 
These shapes increase surface area for photosynthesis, 
can continually grow, and produce structural stability. 
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Figure 7-9 Golden Spiral in Plants 
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Volumetric Symmetry  

 

Common 3-D volumetric forms for modeling systems can be created 
by extending 2-D forms along a third dimensional axis. For example, 
a circle extended along a linear axis with a constant radius creates a 
cylinder, and a circle extended along a linear axis with a shrinking 
radius creates a cone. Other shapes, like a cube and pyramid, can be 
generated in a similar fashion by beginning with a square base. A 
sphere can be formed by rotating a circle on its center axis, and a torus 
can be formed by rotating a circle along another circular curve. These 
are a few of the many possible volumetric shapes for identifying 
spatial patterns in systems.  
 
 

 

    
  Cylinder              Cone                   Pyramid             Cube                 Sphere                    Torus               

Figure 7-10 Common Volumetric Shapes 
 
Another class of spherical symmetries are the regular 

polyhedrons. These forms, called the Platonic solids and previously 
introduced in Figure 4-7, have equal faces, edge lengths, and angles at 
each vertex. The Platonic solids are common geometric symmetries in 
volumetric patterns, packing arrangements, and lattice structures. 
Each of Platonic solid pairs with an inverse dual polyhedron where 
each point of a smaller solid will fit on the center of the face of a dual 
solid. The tetrahedron is its own dual, the cube and octahedron are 
duals, and the dodecahedron and the icosahedron are duals, as shown 
in Figure 7-11.  

 

 

                             
  Tetrahedron Self-Dual           Octahedron-Cube Duals                    Dodecahedron-Icosahedron Duals 

Figure 7-11 Platonic Solids Duals 
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The Platonic solids present many interrelated patterns. For 
example, expanding the center of each face on the octahedron will 
form a star tetrahedron that is inscribed in a cube, as shown in Figure 
7-12. The vertices of a dodecahedron and icosahedron can also 
respectively define five intersecting cubes or octahedrons. 

 
 

                 
    Octahedron             →   Expand all faces from center  →           Star Tetrahedron and Cube  

Figure 7-12 Octahedron, Star Tetrahedron, and Cube 
 
Through some clever extrapolations, the Platonic solids map 

to the points of a 2-D hexagonal lattice. The Flower of Life pattern of 
hexagonally intersecting circles contains the Fruit of Life, which is a 
packing of thirteen circles, shown in Figure 7-13. The Metatron’s 
Cube pattern comes from connecting the center of each circle in the 
Fruit of Life. Metatron’s Cube provides an elegant way to show the 
connection between a 2-D circle lattice and the 3-D Platonic solids. 
Metatron’s Cube aligns with the 2-D projections of the Platonic solids, 
as drawn in Figure 7-13. It should be noted that the icosahedron and 
dodecahedron can only be perfectly traced onto the full 3-D 
Metatron’s Cube by looking at the polyhedral in perspective.120  

 

                                                     
                      Flower of Life                                   Fruit of Life                                Metatron’s Cube 
 

                                         
     Tetrahedron        Hexahedron / Cube        Octahedron             Icosahedron           Dodecahedron 

Figure 7-13 Flower of Life, Metatron’s Cube, and Platonic Solids 
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Spherical Packing  

 

Spherical symmetry often arises in natural systems as the result of 
forces reaching an equilibrium. A drop of water, for example, will tend 
to approximate a sphere because this shape contains the least surface 
area for a given volume and minimizes surface tension. Approximate 
spherical bubbles can be observed in seafoam or oil drops in water, 
which form in different sizes to optimally balance the surrounding 
forces, as shown in Figure 7-14. Planets and stars form in approximate 
spheres in response to gravitational forces, which tend to configure 
matter around a center of mass to minimize potential energy. From a 
physical lens, spherical shapes arise as optimal solutions to balance 
forces, reduce action, and minimize surface area.   

 

                    
                 Water Droplet             Air Bubbles in Sea Foam                Circular Oil Droplets  

Figure 7-14 Spherical Drops and Bubbles 
 
Much like circular packing in two dimensions, various 

symmetrical forms arise as spheres are packed closely together around 
a center point. When two spheres are packed together, they will meet 
along a line. Three spheres will pack in a triangular arrangement and 
four spheres will create a tetrahedral arrangement. Five spheres 
produce a two-pointed tetrahedron. Going further, six spheres will 
pack optimally in an octahedral arrangement, where cross sections 
form a square shape, shown in Figure 7-15. Even higher numbers of 
spheres packed to a center point will create a wide variety of 
symmetric and asymmetric forms. These optimal spherical packings 
can be physically demonstrated by adjoining approximately spherical 
balloons together at a center point. The balloons will be pulled to a 
center point but have a repelling force when too close to a neighbor. 
In finding an equilibrium between pulling and pushing forces, the 
balloons tend to follow the same forms as optimal spherical packings.  
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Tetrahedral Packing of Four Spheres                       Octahedral Packing of Six Spheres 
 

       
                         Two Balloons       Three Balloons        Four Balloons              Six Balloons  
                            (Linear)               (Trigonal)           (Tetrahedron)               (Octahedron) 

Figure 7-15 Spherical Packings 
 
Optimal spherical packing symmetries play a critical role in 

chemical structures. Due to repelling electric forces, electrons orbiting 
atoms and electron bonds connecting atoms will tend to move away 
from one another. Electron bonds connecting two atoms to a central 
atom will tend to present in a linear shape to be the furthest away from 
one another. Following the same pattern as the optimal packing of 
spheres, higher numbers of electron pairs will form according to the 
triangle, tetrahedron, and octahedron. Seven, eight, and nine electron 
pairs go on to produce different geometric patterns. Additionally, if 
there are lone pairs of electrons that are not bonded to any atom, it can 
alter the molecular geometry. For example, the water molecule H2O 
has three electron pairs, but only bonds with two hydrogen atoms, 
resulting in a bent alteration of the linear geometry.  
 
 

            
           Linear                 Trigonal                 Tetrahedron            Trigonal Bipyramid          Octahedron   
         2 Pairs            3 Pairs                   4 Pairs             5 Pairs                        6 Pairs 
           

          (CO2)                      (BF3)                       (CH4)                             (PF5)                           (SF6)   
  Carbon Dioxide      Boron Trifluoride         Methane       Phosphorus Pentafluoride    Sulfur Hexafluoride 

 

Figure 7-16 Molecular Geometry of Electron Pairs 
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Spherical packing arises in animal morphology patterns, 

starting from the earliest stages of life. The first egg cell of an embryo 
is approximately a sphere. This initial egg cell then splits through cell 
division to become two cells with linear symmetry. These two cells 
divide once more into four cells, which often forms into a tetrahedral 
arrangement, and these four cells split into eight and so on, displayed 
in Figure 7-17. Some embryos form in a square at the 8-cell stage, but 
tetrahedron arrangements have shown to be more viable to survive.121  
From there, the embryo cells grow through many asymmetrical 
arrangements and eventually create an approximate spherical shell 
called a blastocyst, which differentiates inner versus outer cells. As the 
blastocyst develops, the inner layer forms the digestive tract, the 
middle layer forms into muscles, and the outer layers creates skin.  

 

 
    1 Cell              2 Cells: Linear        4 Cells: Tetrahedron    8 Cells: Skewed Cube        Blastocyst 

Figure 7-17 Geometry of Early Embryo  
 
Plant morphology is another domain where spherical packing 

forms occur. For example, seed pods can have approximate three-fold, 
four-fold, five-fold, and even dodecahedral symmetry, as shown in    
Figure 7-18. Fruit and flowers also approximate optimal packing 
when growing. These packing forms have benefits for plants like 
efficiently filling space, increasing structural integrity, and gaining 
more exposure to sunlight.   

 

     
 

      3-, 4- , 5-Fold Seeds      Dodecahedron Seed       Packing in Berries                Packing in Flowers 

   Figure 7-18 Packing Symmetries in Seed Pods, Fruits, and Flowers 

\ 
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Microscopic biological systems even utilize icosahedral 
symmetries. For example, viruses take advantage of icosahedral 
symmetry, along with helical and spherical patterns, to protect their 
RNA material in an efficient manner.122 Also, single-cell organisms 
called radiolarians can create a wide range of intricate mineral 
skeletons in spherically symmetrical distributions to protect the outer 
regions of the cell, as shown in Figure 7-19. These are some of the 
many spherically symmetrical structures in biology.  

 

            
 

Figure 7-19 Icosahedral Symmetry in Viruses and Radiolarians 
 
Spherical symmetry can be applied in architecture for 

efficient designs. Buckminster Fuller was an innovative designer who 
often utilized spherical geodesic domes for their high levels of 
structural integrity. These structures efficiently enclose large volumes 
with a low amount of material. Geodesic domes can reduce 
construction time compared to conventional architecture, because 
each side is the same length and many angles repeat. Geodesic domes 
were one of the many innovations Fuller envisioned as part of the 
“design science revolution,” which is a new way to design solutions 
to global problems by thinking in terms of synergistic patterns and 
interrelated systems. The geodesic dome is just one of many 
techniques that can save resources and accomplish system-wide 
benefits.     

 

                           
                   Geodesic Dome Lattice                                     Geodesic Dome Building 

Figure 7-20 Geodesic Domes  

Virus  
 

Radiolarian
s  
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Lattice Structures 

 

Repeating volumetric patterns, called lattices, are an important 
class of symmetry in systems. A highly optimal lattice is the 
cubic closed packing, which consists of points on each of the 
vertexes and the middle of each face of a cube. Each sphere in 
this lattice is the same distance away from its nearest neighbors 
and the overall shape is extremely strong and dense. It is 
believed that closed cubic packing is the densest possible way 
to pack equally sized spheres in 3-D, which is known as the 
Kepler Conjecture.123  

One formulation of this dense packing is to have 
twelve spheres surrounding a center sphere in a cuboctahedron 
geometry, as depicted in Figure 7-21. The cuboctahedron can 
be formed by truncating (replacing end points with a plane) to 
either a cube or octahedron. Cuboctahedrons can then be 
iteratively stacked in a lattice to fill a volume. Cubic closed 
packing can also be constructed through stacking tetrahedrons 
and octahedrons, as each cuboctahedron consists of eight 
tetrahedrons and six half-octahedrons. Projecting the cubic 
closed lattice onto a plane also maps to a triangular lattice, 
providing a connection between optimal 3-D sphere packing 
and optimal 2-D circle packing. 

Lattice symmetries are useful tools to model the 
periodic arrangement of atoms in crystals. Crystalline 
structures can be approximately modeled through lattices with 
spheres of equal or various sizes. Most crystals are based on 
either the cubic, body-centric cubic, or cubic closed packing as 
shown in Figure 7-22.124 These cubic-based lattices can also be 
skewed and bent, which result in seven classes of crystal 
geometry.125  

 

 

               
                           Cubic                       Body-Centered Cubic                 Cubic Closed Packing   

Figure 7-22 Cubic Crystal Orientations  

Cuboctahedron 

Cuboctahedron Lattice 

Figure 7-21 Cubic 
Closed Packing  
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The internal structure of metals often displays cubic closed 
packing and hexagonal closed packing symmetry, which is a different 
form of cubic closed packing that alternates every layer (A, B, ...), 
instead of every third layer (A, B, C, …), as shown in Figure 7-23. At 
room temperature, the atoms of aluminum and gold tend to align in 
cubic closed packing, while zinc and titanium tend toward hexagonal 
closed packing.126 In metals, electrons are not bound to any given 
atom and pervade the entire substance, which produces properties 
such as electrical conductivity and malleability. Metal lattices often 
deviate from a perfect lattice ordering through impurities, being bent 
into deformed shapes, or when mixed with other metals in alloys.  

 
 

                  
 A             B          C            A                               A           B            A            B                                   

             Cubic Closed Packing                                Hexagonal Closed Packing 
 

                     Figure 7-23 Cubic Closed Packing Vs. Hexagon Closed Packing 

 

The atomic lattices in crystal formations beautifully display 
symmetry. Salt is a common example of a crystal and is composed of 
positively charged sodium atoms and negatively charged chloride 
atoms. The attraction of charged atoms create ionic bonding and form 
a closed cubic lattice, shown in Figure 7-24. Diamonds crystals are 
composed of carbon atoms. Each carbon atom has four covalent 
bonds, caused by sharing electron pairs, which forms a stable 
diamond-cubic lattice with tetrahedron junctures. Ice forms another 
type of crystal where hydrogen and oxygen atoms stack in layered 
hexagonal rings. The lattices structures found in crystals influence 
properties such as transparency, hardness, and electrical behaviors.  

 

 

                           
 

  Salt: Closed Cubic Lattice            Diamond: Diamond-Cubic Lattice           Ice: Hexagonal Rings 

Figure 7-24 Crystal Lattices in Common Materials 
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In realistic conditions, many factors can cause crystals to 

deviate from a perfectly uniform lattice. Material impurities, 
temperature, pressure, and other environmental factors can alter the 
shape of a crystal lattice. Additionally, atomic nuclei and electrons are 
continuously vibrating from temperature and the wave-particle 
duality. Lattices represent the average geometry among energetic 
fluctuations and are not perfectly defined at a given time.  

While not perfectly determined, the macro-level geometric 
forms of crystals are influenced by microscopic lattice symmetries. 
For example, quartz crystals often terminate, or end, on a six-sided 
point due to the hexagonal symmetry of the atomic lattice. Fluorite 
crystals have a body-centered lattice, resulting in the approximate 
octahedral shape, as shown in Figure 7-25. Pyrite metal forms 
approximate cubes and dodecahedrons from its cubic lattice. These 
are a few examples that show how the underlying atomic lattice 
symmetry has an influence on the overall crystal shape.  

Crystal lattice symmetries are almost exclusively based on the 
tetrahedron, octahedron, and cube, rather than the icosahedron or 
dodecahedron. It was believed to be impossible for icosahedral crystal 
symmetry to occur because there are no repeatable lattice patterns of 
icosahedrons or dodecahedrons to fill a volume without empty gaps. 
Contrary to common thought, Dan Shechtman discovered in 1982 that 
some crystals, called quasicrystals, have an aperiodic icosahedral 
symmetry, a discovery for which he was awarded the Nobel prize.127 
In quasicrystals, atoms form into groups, such as the Bergman cluster, 
which creates a non-repeating aperiodic lattice.128 When shining a 
light on a quasicrystal, the resulting diffraction patterns have five-fold 
symmetry similar to aperiodic Penrose tilings.129 Another example of 
icosahedral symmetry is buckminsterfullerene, or “buckyball”, 
nanoparticles formed out of sixty carbon atoms in the shape of a 
truncated icosahedron, as depicted in Figure 7-26.130  

 
 

                                                             
        Aperiodic Penrose Tiling                    Buckyball of 60 Carbon Atoms                    

 

  Figure 7-26 Quasicrystals and Icosahedral Symmetry  

Fluorite 

Calcite 

Figure 7-25 
Macroscopic 
Crystal Forms 

Pyrite 
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Higher Dimensions 
 

Spatial symmetry can be extrapolated to higher dimensions, such as 
4-D space, which generates various non-intuitive properties. A 
common element in 4-D space is the hypersphere, which is a higher 
dimension analog to a 3-D sphere. While a curved surface is 
sufficient to define the boundary of a sphere, a curved volume is 
required to define the boundary of a hypersphere. In a hypersphere, 
it is possible to continuously move in a straight line and never reach 
the edge of the warped volume, which defies common notions of 
spatial relations. A hypersphere can also be mapped to a sphere 
where each point is extended to a circle, or fiber bundle, that 
intertwines through a process called a Hopf fibration. These models 
warp a flat Euclidean perspective of spatial systems.  

The 3-D regular polyhedron have higher dimensional 
analogs, called 4-D polytopes. While the 3-D Platonic solids are 
made by stitching flat polygons together, the 4-D regular polytopes 
are made by stitching together multiple Platonic solids. The 
hypercube, for example, is constructed with eight cubes that warp 
around one another. In total, there are six regular 4-D polytopes, 
shown in Figure 7-28. Five of these polytopes are higher dimension 
analogs to the Platonic solids and the sixth is called the 24-cell. In 
5-D and higher, the number of regular polytopes drops to three, thus 
4-D has the most regular polytopes.  

 
 

                     
     5-Cell                                      8-Cell                                       16-Cell 

 

              
                               24-Cell                                     120-Cell                                  600-Cell 

Figure 7-28 Four-Dimensional Regular Polytopes 

Figure 7-27 Hypersphere  
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The 4-D polytopes have unique properties beyond 3-D 

forms. The 24-cell is particularly interesting as it is its own self-
dual and has no direct analog in 3-D. The 24-cell lattice is the 
optimal 4-D hypersphere packing, like the closed cubic lattice 
is in 3-D and the triangular lattice is in 2-D. The 120-cell is also 
an interesting 4-D polytope, which may be useful in physics 
applications. For example, the 120-cell may be helpful in 
modeling the shape of the universe and the cosmic microwave 
background.131  

 

 
 

Figure 7-29 24-Cell Orthogonal Projection 
 

Even higher dimensions can be used to analyze natural 
systems. In crystallography, some diffraction patterns of 
icosahedral quasicrystals can be modeled with 5-D lattices. 
Another example of higher dimensional models is the Kaluza–
Klein theory that extends general relativity into 5-D spacetime, 
where a line translates to a small cylinder. This model was 
proposed to account for quantum spin within gravity. The 6-D 
Calabi-Yau manifold, as depicted in Fig 7-30, is another model 
used to describe bundled up dimensions in string theory. String 
theory attempts to unify general relativity and quantum 
mechanics. In string theory, higher dimensions, up to 10-D or 
11-D, are bundled up at the quantum level.  

 
 

 

           

            Kaluza-Klein                          Calabi-Yau Manifold 
 

Figure 7-30 Higher Dimensional Physics 
 

Cylinder Path 
Path 

 

•  24-Cell is a 4-D regular solid 
made with 24 octahedrons 

 

•  There are 24 vertex points 
with the locations:  
(±1, ±1, 0, 0) , (0, ±1, ±1, 0) 
(±1, 0, ±1, 0) , (0, ±1, 0, ±1) 
(±1, 0, 0, ±1) , (0, 0, ±1, ±1)  
 
 

The optimal lattice 
packings of the circle, 
sphere, hypersphere, and 
higher dimensional 
spheres are known up to 
8-D, as well as in 24-D. 
These packings are below: 

 

2-D: Hexagon lattice 
3-D: Closed cubic packing 
4-D: 24-cell packing 
5-D: Closed cubic analog 
6-D: Cross section of E8  
7-D: Cross section of E8   
8-D: E8 Lattice  
24-D: Leech lattice 
 

The E8 term references an 
exceptional symmetry 
group that arises when 
studying continuous 
spaces, called Lie groups. 
The Leech lattice is highly 
symmetrical and allows for 
a very large number of 
hyperspheres to touch a 
common unit in 24-D. 
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Symmetry Groups 

  

Groups provide a powerful and generally way to study 
symmetry. A group is the set of all symmetries that apply to an 
object. For example, consider an equilateral triangle where each 
vertex is indistinguishable, but is labeled a, b, and c to track 
changes. The identity symmetry includes transformations that 
leave the triangle as it originally is, like a 360° rotation. Rotating 
the triangle 120° to the right is another symmetrical operation, 
but it switches the vertices into a new clockwise order (c, a, b). 
The triangle can also be rotated -120°, or 240°, for a new 
symmetry with vertex order (b, c, a). Additionally, the triangle 
can be flipped along any of the a, b, or c axes to create new 
orientations of the vertices. These six transformations comprise 
the symmetry group of the triangle and represent every possible 
mapping the preserves the structure.  

 
     Identity                Rotate 120°              Rotate -120°              Flip Axis a             Flip Axis b           Flip Axis c                            
         a                          c                           b                         a                          c                          b 

   
c                b        b               a         a               c         b               c         a              b         c                a   
         

Figure 7-31 Symmetry Group of an Equilateral Triangle 
 
Groups can be used to classify shapes, like the 

uniform polytopes. The Coxeter group includes various 
families of polytopes (An, Bn, ...) and denotes the dimension 
in the subscript. The An Coxeter group includes polytopes 
based on triangles, like the 2-D triangle (A2), 3-D tetrahedron 
(A3), 4-D 5-cell (A4), as well as higher dimensional analogs. 
The Bn group members are based on squares, like the square 
(B2), cube and octahedron (B3), hypercube (B4), and so on. 
The Hn group contains the pentagon (H2), dodecahedron and 
icosahedron (H3), and the 120-cell (H4), but there are no 
pentagonal polytopes in 5-D or higher. Additionally, there 
are five exception cases that create irreducible symmetries, 
which are the hexagon (G2), 24-cell (F4), and three other 
exceptional groups E6, E7, and E8 that create uniform 
polytopes (through not perfectly regular) with new 
symmetries in 6-D, 7-D, and 8-D, called 122, 221, and others. 
These polytope families are summarized in Figure 7-32.  

 

Figure 7-32 Coxeter Groups 
and Polytope Families  

The dihedral group Dn 
includes symmetries of 
regular n-sided polygons. 
 

D1 = Line (1 turn) 
D2 = Rectangle (½ turn) 
D3 = Triangle (⅓ turn) 
D4 = Square (¼ turn) 
D5 = Pentagon (⅕ turn) 
D6 = Hexagon (⅙ turn) 

…. 
 

 

An: Triangle, Tetrahedron, 5- 
Cell, 5-simplex, 6-simplex … 

 

Bn: Square, Cube, Octahedron,    
8-cell, 16-Cell, 5-cube, … 

 

Hn: Pentagon, Dodecahedron, 
Icosahedron, 120-Cell, 600-Cell 

 

G4: Hexagon 
 

F4: 24-Cell 
 

E6: (122, 221)  
 

E7: (132, 231, 321)  
 

E8: (142, 241, 421) 
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A widely used group, with deep physical applications, are 

the special orthogonal groups SO(n), which are symmetrical 
across all possible rotations in n-dimension space. The special 
orthogonal group SO(2) includes all the continuous rotations of a 
2-D plane. SO(2) can be geometrically mapped to the path of the 
circle (or 1-sphere) that remains symmetrical under continuous 
rotations of the single angle θ. The SO(3) group is the set of 3-D 
rotations, which includes three unique rotations on each axis θx, 
θy, and θz. SO(3) can also be mapped to the 3-D volumetric surface 
of a hypersphere (3-sphere). Figure 7-33 shows SO(2) and SO(3) 
with examples of rotated coordinates in dotted lines. These 
continuous rotational symmetries are very general and contain 
polytope symmetries as subgroups with finite rotations.  

The size of rotation groups refers to the dimensional size 
of possible transformations, which is distinct from the dimensions 
of the spaces being rotated. For example, even though SO(2) is 
rotating a 2-D plane, it has a size of 1-D because there is just one 
continuous rotation variable θ that comprises the path of the circle. 
SO(3) rotates 3-D spaces and also has a size of 3-D, with three 
distinct possible rotations on each axis θx, θy, and θz. More 
generally, the dimensionality of SO(n) rotations follows ½n(n-1). 

Another foundational rotation group useful for physics is 
the Unitary Group Un, whose members are the set of possible 
rotations of n-dimensional complex numbers. Complex numbers 
have both real and imaginary components (a + bi), where i2 = -1.  
The Unitary group U(1) describes the rotations of one complex 
number, which has both a real axis and an imaginary axis. U(1) 
can also be mapped to SO(2), because both rotate along two axes 
and can be geometrically transformed into the circle.   

The Special Unitary groups, SU(n), are called “special” 
because these groups only include new rotations not in U(1). The 
SU(2) group considers the rotational symmetries of two complex 
numbers, written (a + bi) and (c + di), and contains three new 
types of rotations. SU(2) and SO(3) are very similar because they 
both have three distinct rotation variables, which can be mapped 
to a 3-sphere. SU(3) rotates three complex numbers, (a + bi), (c + 
di), and (e + fi), and has a size of 8-D with 8 distinct rotations. In 
general, the dimension of SU(n) follows the relation of n2-1. SU(3) 
also has an interesting geometric mapping, which equals a Hopf 
fibration of 3-sphere fiber bundles over a 5-sphere manifold. 
These unitary groups are summarized in Figure 7-34.  
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SO(2) = {θ}   
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Figure 7-33 
Rotation Groups 

U(1) = {1 type of θ}   
 

Figure 7-34 
Unitary Groups 

SU(2) = {3 types of θ}   
 

SU(3) = {8 types of θ} 
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The unitary groups U(1), SU(2), and SU(3) are essential 
to understanding the forces in the Standard Model of particle 
physics. The electromagnetic force has U(1) symmetry, and 
using the complex numbers (a+ bi), it can define the up versus 
down spin of electrons and electromagnetic behaviors. The weak 
nuclear force, which describes radioactive decay and participates 
in nuclear fission and fusion, has other measures like “isospin” 
which require using SU(2). The strong nuclear force, which holds 
together the sub-elements of protons and neutrons (quarks) with 
three types of “color” charge, requires SU(3) symmetry.  

Symmetry is essential in physics because, following 
Noether’s theorem, each continuous symmetry that follows the 
principle of least action has a corresponding conservation law. 
The previous examples of time, spatial, and rotation invariances 
leading to the conservation of energy, momentum, and angular 
momentum (Figure 5-20) are examples of collectively shared 
external symmetries. In contrast, the U(1), SU(2), and SU(3) are 
intrinsic symmetries. For example, electron spin does not align 
to external orientations, but rather internal orientations. In 
modern particle physics, the U(1), SU(2), and SU(3) symmetries 
each have a conservation law corresponding to different 
fundamental physical forces and elementary particles.132  
 
 

 

Symmetry 
 

Conservation 
 

Force 
 

Force Particles 
 

Particles Experiencing 
U(1) Electric Charge Electromagnetism Photon Electrically charged 
SU(2) Weak Isospin  Weak Force W boson, Z boson Quarks and Leptons 
SU(3) Color Charge  Strong Force Gluon Quarks and Leptons 

 

Figure 7-35 Symmetries in Standard Model of Particle Physics 
 

Summary 
 

Symmetry provides a foundational tool to identify patterns in systems. 
Symmetry can be used as a tool to model the structure and 
organization of systems with many pieces, from crystals, to flowers, 
to particle physics. Symmetrical and approximately symmetrical 
arrangements commonly form in natural systems to achieve optimal 
packing or to follow the principle of least action. While it can seem 
that nature follows a perfect underlying symmetry, there also exists 
asymmetry and randomness in the world. The next chapter will 
explore how chaotic processes can lead to new kinds of fractal 
patterns, extending symmetry to more complex systems.  

Elementary particles in 
the Standard Model 
compose matter and 
forces (except gravity), 
and can have variations, 
such as anti-particles.   
 

Bosons: (Force Carriers) 
 

§ Photon 
§ W boson 
§ Z boson 
§ Gluon 
§ Higgs 

 

Fermions: (Matter) 
 

§ Quarks: (up, down, 
charm, strange, top, 
bottom) 

§ Leptons: (electron, 
muon, tau, neutrinoe, 
neutrinom, neutrinot) 
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Chapter 8 Fractals 
 

 
 

 
Fractals give insight to a common pattern of systems: scalability. 
Unlike translational or rotational symmetries that describe 
changes over distances or rotations that repeat the same result, 
fractal symmetries describe transformations that repeat over 
different sizes of scale, as shown in Figure 8-1. A system with a 
fractal symmetry will have a repeating pattern that spans from 
small to large scales.  
 

 
S :{X         X } 

 

Figure 8-1 Equation for Fractals  
 
Fractals present a useful tool for systems science by 

uncovering patterns spanning small to large scales and identifying 
unifying rules that apply to both components and collections. 
Fractal patterns can be seen in the shape of crystals, fluids, 
geology, and plants, as well as ecological and socioeconomical 
trends. Fractals are deeply related to chaos theory and provide 
insights into the distribution of outcomes from chaotic dynamics 
in systems as widespread as random particle motion, stock prices, 
and earthquakes. Power laws, which describes how a given 
measures change across ranges of scale, is a very general and 
powerful way fractals can be applied to study natural systems. 
Altogether, fractals provide an important way to study structure, 
connectivity, and complexity of systems.   

The structure and 
pathways of a leaf 
form a pattern that 
repeats from small 
to large scales, 
providing a strong, 
efficient, and 
sensitive form.

change 
scale 

 Scale 
%⎯⎯' 
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Fractal Geometry 

 

Fractals can be demonstrated through the combination of polygon 
units. By stacking three triangles together, it is possible to create a 
larger triangle, which can then be used as a unit to stack into an even 
larger triangle. Continuing iterations of this pattern create the 
Sierpiński triangle fractal.133  Similar fractal stacking arrangements 
can be constructed with squares or pentagons, as shown in Figure 8-2. 
These polygon fractals can continue for a finite number of iterations 
or be repeated infinitely in a never-ending recursion. 

 

 
 

             
 

Figure 8-2 Triangle, Square, and Pentagon Fractals 
 
Fractal geometry can be constructed in a similar fashion with 

3-D polyhedrons. For example, multiple tetrahedrons can be stacked 
to form a large tetrahedron, which can be used as a unit for further 
iterations. Fractals can be similarity made with octahedrons and 
dodecahedrons, as shown in Figure 8-3. Volumetric fractals can occur 
in crystal lattice structures, where similar patterns repeat from small to 
large scales. Most crystals have periodic cubic and tetrahedral lattices, 
while quasicrystals can form aperiodic icosahedral arrangements.134  

 
 

                                    
               Tetrahedron Fractal                  Octahedron Fractal               Dodecahedron Fractal 

Figure 8-3 Regular Polyhedrons with Fractal Stacking 
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Another method to create a fractal is to repeatedly divide 
the perimeter of an object into smaller segments. The Koch 
snowflake, for example, is created by dividing the perimeter of a 
triangle into smaller protruding segments to form a six-pointed star, 
then continuing to subdivide the perimeter into a snowflake-like 
pattern, as shown on Figure 8-4. Surprisingly, the Koch snowflake 
will have a perimeter length that grows longer and approaches 
infinity as this fractal iteration is continued, even though there is 
only a finite surface area bounded. 135  The changing perimeter 
length with smaller line segments relates to the coastline paradox, 
which is the intriguing result that the measured length of a coastline 
can differ depending on the scale of measurement used.136  

 

 
 

Figure 8-4 Koch Snowflake  
 
The Koch snowflake can be extrapolated into three 

dimensions. This is accomplished by starting with a star 
tetrahedron and iteratively adding smaller protruding star 
tetrahedrons to each vertex point, as shown in Figure 8-5. Carried 
out to a high degree, this fractal will increase and approach an 
infinite surface area, even though there is a finite volume enclosed. 
Biological systems often form in a similar protruding fashion to 
maximize surface area. For example, protrusions on the outer 
membrane of cell, called microvilli, maximize surface area for 
diffusion to occur. The airways of the lungs also have iterative, and 
fractal-like, structures called alveoli that maximize the surface area 
for oxygen absorption.137  
 

          
 

 

Figure 8-5 3-D Koch Snowflake 

Example 8.3  
Coastline Paradox 
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The Hausdorff dimension D, or fractal dimension, 

describes how scaling a geometric system will change length, area, 
volume, or other measures by a specific power. A point has a fractal 
dimension D = 0, a line has D = 1, a square has D = 2, and a cube 
has D = 3. When scaled by two units, a 1-D line’s length will grow 
by a factor of two (21 = 2), a 2-D square’s area will grow by a factor 
a four (22 = 4), and a 3-D cube’s volume will grow by a factor of 
eight (23 = 8), as displayed in Figure 8-6. In most common shapes 
like polygons and polyhedrons, the fractal dimensions are whole 
numbers that equal the topological dimension, like 1, 2, or 3. 

 
 

  Point           Line       Square Cube 
Object 

 
    

Object’s measure 
when scaled by 2 

 

  
        1 

 
                          2 

 
                     4  

 
                      8 

Fractal dimension D = 0  (20  = 1)     D = 1   (21 = 2)   D = 2   (22  = 4)      D = 3   (23 = 8) 
 

Figure 8-6 Fractal Dimensions and Scaling 
 

Particularly interesting fractal geometries occur when the 
Hausdorff dimension of an object does not equal the spatial 
dimension in which the object resides. For example, the Sierpiński 
triangle resides on a 2-D plane, but the object has a fractal 
dimension of D = 1.58…, as the pattern’s area only gets three times 
larger when doubling the side length, as shown in Figure 8-7. In 
contrast, a regular triangle has a fractal dimension of D = 2, which 
is equal to a plane’s topological dimension. Greater fractal 
dimension generally relates to more coarseness. For example, the 
fractal dimension of the Koch Snowflake increases with more 
iterations. In cell membranes, greater fractal dimension 
corresponds to increased surface area to exchange nutrients.138  

 
 
 

 
Figure 8-7 Scaling a Triangle and a Sierpiński Fractal 

2D = 4                  2D = 3     
D = log(4)/log(2)                                 D = log(3)/log(2) 
D = 2                                                                                   D = 1.58… 
…    
  

Example 8.4 
Hausdorff Dimension 

The equation for the 
fractal dimension D. 
 

Measure = Scaling D         

 

  /	 =  log(Measure)
log(Scaling)          

 

Triangle: As length is scaled by 2, 
  area grows 4-fold 

 

Sierpiński Fractal: As length is scaled by 2,  
area grows 3-fold 
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Fractals in Living Systems 
 

Living systems often possess fractal-like structures, processes, and 
patterns to organize across a range of scales.139 Cells group to form 
tissues, which then combine to form muscles. Tissues and muscles 
form organs, which then make up larger anatomical systems. Through 
synchronized organization across multiple scales, the human body 
acts as a single functioning system. In a similar way, individual 
organisms can act as the base units that make up the larger populations 
in an ecosystem. These populations relate through evolutionary 
patterns at the scale of the Earth’s broader biosphere. The nested 
patterns of living systems resemble fractals in their ability to establish 
complex and coherent patterns across small to large scales.   

Fractals can be observed in the shape, or morphology, of 
plants and animals. For example, small to large tree branches tend to 
repeat patterns at different scales, as shown in Figure 8-8. Fractal 
symmetries also occur in the branching patterns of veins, arteries, and 
the nervous system.140 The growing pattern observed in Romanesco 
broccoli is symmetrical across scales, as each spiral cone resembles 
the whole plant. One useful and efficient functionality of fractal 
patterns are that they allow space-filling forms to continuously grow 
from small to large scales through a single repeating pattern. 
Additionally, fractal patterns can be optimal solutions to maximize the 
surface area to exchange nutrients and simultaneously minimize the 
transport distance and times across the living system.141  
 
 

                     
           Tree Branches                                 Leaf Structures                  Romanesco Broccoli 
 

Figure 8-8 Fractal Patterns in Plant Morphology 
 
Another pattern related to fractals found in biology is the 

Fibonacci sequence. The Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, …}, 
introduced in Chapter 6, is created by summing the two previous 
numbers to create the next number in a self-similar fashion, written as 
(xn + xn+1 = xn+2). The recursive Fibonacci sequence is relevant to 
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biology and arises in the number of clockwise and anti-clockwise 
spirals in pinecones, pineapples, and sunflowers.142  The Fibonacci 
sequence is seen in the splitting of some plant stems and approximated 
in the ratio of the lengths of finger bones, shown in Figure 8-9.143  

 
Fibonacci Sequence:  {0,  1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  89,  144,  233,  …} 

 

Self-Similar Sequence (xn + xn+1 = xn+2):  1 = 1 + 0,  2 = 1 + 1,  3 = 2 + 1,  5 = 3 + 2, … 
 

13 
8 
5 
3 
2 
1  

   2       3           5                     8  

 

 Plant Splitting         Human Finger Bones 
 

 

Figure 8-9 Fibonacci Numbers and Morphology Patterns 
 
As the sequence increases, the relationship between Fibonacci 

terms approaches the golden ratio. For example, the ratio of the 
Fibonacci numbers of 89 and 55, (89/55 = 1.61818…) is very close to 
the golden ratio (Φ = 1.61803…). The golden ratio is irrational, so it 
can never be perfectly expressed by a ratio of whole numbers, but 
adjacent Fibonacci terms approach the ratio when increasing.   

The golden ratio is one of the simplest fractal patterns, as it 
requires one division within a line segment. The golden ratio 
recursively splits a line segment so that the ratio of the small part to 
large part, a / b, is equal to the ratio of the large part to the whole line 
segment, (a + b) / a. Another recursive aspect of the golden ratio is 
seen in the continued fraction representation. The golden ratio equals 
one plus one, divided by one plus one, divided by one, and so on, as 
shown in Figure 8-10.  Since the number one is the lowest whole 
number, the golden ratio requires the most iterations to improve 
accuracy through a continued fraction and can be considered the most 
irrational number.144  

            
 

  a = 1                        b = ϕ = .618… 
 

     …  
     a = Φ = 1.618…               b = 1                  

 
 

Golden Ratio:    a / b = (a + b) / a           Common Formulas    Continued  Fraction 
 

Figure 8-10 Golden Ratio 

	Φ	=	1+ 
1

1+ 1
1+ 1

1+ 1
1+…

 

 
    

 
Φ = 1.618... =  1 + ϕ  = 1/ϕ 
 ϕ  = 0.618... =  Φ – 1  = 1/Φ 
 
Φ2  = Φ + 1                    ϕ2 = 1 – ϕ  
Φn  = Φ(n-1) + Φ(n-2)             ϕn = ϕ(n-2) – ϕ(n-1) 
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Approximations of the golden ratio are often found in the 
shapes of biological systems. For example, if the height of a person is 
treated as 1 unit, the length from their feet to their belly button is 
approximately the ratio 1/Φ. Going further, the length of the arm is the 
ratio 1/Φ2, the length of the foot is 1/Φ4, and the length of the hand is 
1/Φ5.145 These ratios and other examples are depicted in Figure 8-11. 
Not every human body has the same proportions, but on average, 
many features approximate the golden ratio. Other ratios and fractal 
scaling laws, beyond the golden ratio, also apply to biological systems.  

 

       
 

Figure 8-11 Golden Ratio in Human Body 
 

Spirals, which follow a similar pattern when magnifying or 
minimizing scales, are another common type of fractal geometry 
observed in nature. In the golden ratio spiral, each quarter rotation 
around the center makes the curve move farther away from the center 
by the golden ratio. Approximates to golden spirals can be observed 
in natural patterns, such as the human ear or seashells.146 Spirals can 
also have other ratios and form the broader class of logarithmic spirals. 
Spirals are a common pattern in living systems as well as physical 
systems, like weather patterns, that span many scales of size.  

 

                                                                 
    Golden Ratio Spiral                     Nautilus Shell                         Cyclone  
 

 

Figure 8-12 Golden Ratio Spiral and Spirals in Nature 
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Dendritic Formations 

 

Dendrites are a common fractal pattern that arises in natural systems. 
Dendrites look like growing branches that repeat from small to large 
scales. Dendritic patterns often come about as liquids or gases 
transform into a solid, such as molten metal solidifying.147 Dendrite 
branches can be seen in snowflake crystals and in the electric arc paths 
of lighting, as shown in Figure 8-13. Another process that creates 
dendrite structures is diffusion-limited aggregation (DLA). DLA 
structures are created when particles moving in random motion latch 
onto a stationary seed particle. Electrodeposition, which is a process 
to solidify freely moving particles to a charge surface, creates 
materials that closely resemble DLA patterns.148  

 
 

                                   
                 Ice Crystal Dendrites              Lighting Dendrites                           DLA Dendrites                            
 

Figure 8-13 Dendritic Formations  
 

Fractal dendrites can be observed in geological and biological 
systems. For example, glaciers carve dendritic forms in mountain 
ranges, as shown in Figure 8-14. As water flows down mountains 
through the principle of least action, drainage systems carve scale-
invariant networks that resemble dendrites.149 Dendrites can also be 
seen in the root systems of plants that split into small branches to 
efficiently absorb water and nutrients. These fractal dendrites are 
efficient patterns to support small to large scale resource flows.  

  

                                                        

            Sand Formation                           Mountain Rivers                            Root System 
 

Figure 8-14 Dendrites in Geophysical and Biological Patterns 
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The brain is another biological system where 
fractals and dendritic patterns support structure and 
function. Neurons, or brain cells, have protruding branch-
like structures, which are also coincidentally called 
dendrites. Neural dendrites collect signals that are 
processed in the cell nucleus and influences if an electric 
pulse is sent as an action potential through the neuron’s 
axon to other brain cells. A diagram of a neuron’s 
structure is depicted in Figure 8-15. Neural dendrites 
allow brain cells to connect with one another and form an 
intricate network of relationships to process information. 
The neural network is not random, but instead organized 
in specific pathways to enable information processing and 
biological functions. Organizing a neural network is an 
immense task as there are about 86 billion neurons and 
trillions of synapses in a human brain.150  

Fractals, along with other organizing patterns, are 
suspected to occur in animal nervous systems and neural 
networks to support functionality. Fractal geometry can 
be seen in the complex and densely interconnected 
structures of dendrites in neural networks, like Figure 8-
16. These fractal patterns in neural networks can support 
the creation of nested systems of hierarchies, high degrees 
of sensitivity, and local-to-global organization. 151 
Fractals can also serve as useful patterns from an 
informational perspective by being able to efficiently 
input, store, and output large amounts of information by 
repeating rules over multiple scales. Biological systems 
even utilize self-similar logic and fractal-like information 
systems that can optimize both micro and macro 
stimuli.152   

Bifurcating branching patterns provide a crude 
analogy for how a fractal organization can support the 
formation of the brain. This fractal pattern, shown in 
Figure 8-17, first splits into two opposing sections, similar 
to the dual hemispheres of the brain. These branches are 
then further divided into subsections, and even smaller 
subsections, that become increasingly detailed. Neural 
networks observed in the brain have much more specified 
and complex patterns, but this example shows how fractal 
patterns can support micro-to-macro connectivity and 
collective optimization of networks. 

 

   Nucleus 

Figure 8-15 Neuron Structure 

 
  Figure 8-17 Fractal Branching 

Action  
Potential 

Dendrites Axon  
Terminal 

 
  Figure 8-16 Neural Network 
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Chaos and Fractals 

 

Fractal patterns often arise in random and chaotic systems. For 
example, the “chaos game” begins by placing a dot anywhere in a 
triangle. Next, new dots are placed halfway between a randomly 
chosen vertex of the triangle and the previous dot. At first, the dots 
appear randomly placed, but a fractal pattern eventually forms after 
many iterations. Chaos games can be performed with different 
polygons and placement ratios to produce a wide array of fractal 
patterns, some shown in Figure 8-18. 

 

              
 

    
 

Figure 8-18 Chaos Game Fractals in Regular Polygons 
 
Random walks are also deeply connected to fractals. A 

random walk marks a path undergoing random displacement changes 
within certain bounds (e.g. -1 to 1). Figure 8-19 shows a 1-D random 
walk, with a random vertical change and constant horizontal change, 
as well as a 2-D random walk, with random changes to both the 
vertical and horizontal locations. After many iterations, a random walk 
path creates a pattern that is scale-invariant.153 This means the random 
walk will have the same fractal dimension and the other scale-free 
measures of average displacement from small to large scales.  

 

    
 

Figure 8-19 Scale-Invariant Fractal of Random Walk in 1-D and 2-D 



 

 

Chapter 8 Fractals       133  

     

The collective average of many random walk paths produces 
the emergent higher-level result of smooth diffusion. In fluids and 
gases, each molecule follows an approximate random walk, called 
Brownian motion, caused by many chaotic collisions. When 
considering a large number of random walks, concentrations of 
particles will tend to evenly spread apart and follow the diffusion 
equation, as shown in Figure 8-20.154 While diffusion is often pictured 
as a smooth process, it can also be modeled through the collective 
behavior of many random walks, each with a fractal symmetry. 

 
 

          
 

Figure 8-20 Diffusion of Random Walk Collections 
 
Random walks can be applied to surfaces to create fractal 

landscapes. Between the adjacent points, the surface height changes 
by a random degree which creates irregular bumps and dips. 
Variations of this process result in patterns that resemble mountain 
ranges and other geologic formations, as shown in Figure 8-21. This 
random walk surface is influenced by different boundary perimeters 
and the maximum height variations allowed per step. 

 

 
 

Figure 8-21 Random Walk Fractal Landscapes 
 
Fractals can be used to analyze volumetric distributions in 

systems. For example, fractal distributions arise in water vapor clouds, 
which are rough and lumpy yet also have similar variations across 
small to large scales. Expanding further, fractal analysis can help 
analyze the network-like distribution of matter and dark-matter (a 
form of matter that interacts with gravity, but not electromagnetic 
forces) in the universe.155 There is even a fractal pattern in the cosmic 
microwave background temperature across space.156  

Diffusion over Time 

Many particles 
following 

random walks 
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Chaotic Attractors  

 

Dynamic systems with nonlinear rates of change can drive the 
formation of fractal patterns. The chaotic turbulence of fluids, 
for example, exhibits a fractal dimension where similar 
patterns exist across multiple scales of size. More generally, 
the equations of fluid dynamics are scale-free, and patterns 
often repeat from small to large scales. Nonlinear systems can 
be highly sensitive to initial conditions and can lead to chaotic 
patterns that cannot be efficiently predicted with high degrees 
of accuracy. However, fractals can provide some insight into 
understanding the chaotic distribution of outcomes. 

A pioneering mathematician in the late 19th and early 
20th century that provided essential groundwork for chaos 
theory was Henri Poincaré, who introduced new methods for 
celestial mechanics when trying to solve the chaotic three-
body problem.157 Poincaré used the concept of phase space in 
attempting to find patterns in these chaotic motions. Each 
point in phase space represents a possible state of a system, 
such as a certain position and momentum. When graphing the 
evolution of chaotic and nonlinear dynamical systems in 
phase space, new types of patterns emerged. Even though 
these phase space patterns usually never repeat and cannot be 
predicted with high degrees of accuracy across long time 
frames, the patterns can have interesting symmetries, like 
fractals. 20th century computers now have the ability to graph 
extremely large datasets, which provide a way to visualize 
hidden fractal patterns in the phase space of chaotic motion.  

 In chaos theory, an attractor is the tendency for a 
system to be drawn to a given pattern in phase space. There 
are many types of attractors, such as point attractors, cyclical 
attractors, and strange attractors. Point attractors settle 
towards a single state in phase space over time and periodic 
attractors settle into cyclical patterns. Both points and periodic 
attractors can be approximated by linear systems of equations. 
In contrast, strange attractors do not have any easily solvable 
or periodic result. For example, the Lorentz attractor pictured 
in Figure 8-23 describes fluid convection currents exposed to 
energy. This non-repeating strange attractor sometimes favors 
the left or right side, or suddenly switches. While seemingly 
random, this chaotic system has a fractal distribution of paths 
in phase space, where large to small bands of paths clump 
together, similar to the rings of Saturn. 

Strange Attractor 

Figure 8-23 Chaotic Attractors 

 

Figure 8-22 Fractals in 
Fluid Turbulence 

Periodic  Attractor 
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flow 
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One of the most famous strange attractors is the Mandelbrot 
set, named after Benoit Mandelbrot who popularized the concept of 
fractals in the book The Fractal Geometry of Nature published in 
1982. The Mandelbrot set includes bounded values of c when iterating 
the nonlinear equation xn+1	=	xn

2	+	c beginning with the value x1 = 0. 
In this equation, the constant c is a complex number (c = a + bi), 
where i2 = -1.  As multiple iterations of x are continued, some c values 
cause x to approach infinity, while others do not. For example, when 
c = -1, the series (0, -1, 0, -1, 0, ...) will be bounded and included in 
the Mandelbrot set. When c = 1, the series (0, 1, 2, 5, ...) will increase 
infinitely and thus be excluded from the Mandelbrot set. At increasing 
magnification, many intricate patterns appear and repeat over different 
scales, some of which are shown in Figure 8-24.  
 

             
 

             
 

Figure 8-24 Magnifications of the Mandelbrot Set 
 
Chaotic dynamics show up in many kinds of natural systems. 

Weather predictions more than about 10 days in the future is near 
impossible to perform with high degrees of accuracy due to the chaotic 
nature of the atmosphere.158 The weather may follow general trends, 
such as more rain in winter and less rain in summer, but specific day-
to-day weather conditions cannot be predicted with high fidelity. 
Chaotic systems are also present in modeling geologic formations, 
biological populations, and a variety of socioeconomic patterns like 
stock market volatility. While similar, chaos differs from pure 
randomness because there are some underlying patterns and 
relationships, rather than pure random noise. Chaotic systems are also 
subject to large and unexpected changes, like stock market crashes, 
and other macro-level events, like phase transitions, which happen 
much more frequently than would occur in a random model.   
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Scaling Relations 

 

A very generalized way to apply fractals is through power laws. 
Power laws occur when an output is proportional to an input raised 
to a power, or fractal dimension D, written f (x) ∝ xD. For example, 
with a sphere’s radius equal to x, its surface area is proportional to 
the square x2, and its volume is proportional to the cube x3. Power 
laws are scale-free, which means a relative change in one quantity 
gives rise to a proportional relative change in the other quantity, 
independent of the initial size of those quantities. For example, there 
is no preferred length, or units of measurement, where the relation 
to area (2-D) and volume (3-D) deviates from the power rule. Power 
laws graphed on logarithmic scales (… 10-2, 10-1, 100, 10-1, 10-2, …) 
produce straight lines with constant slopes equal to D, as shown in 
Figure 8-25. 

 

             

 
Figure 8-25 Power Laws and Logarithmic Scales  

 
Many physics equations used to model nature are based on 

power laws. For example, gravitational and electric forces are 
inversely proportional to the square of the distance, following force 
∝ distance 

-2. Similarity, the intensity of light beams emitted from a 
point source reduces over distance following the inverse square law, 
intensity ∝ distance 

-2. The restoring force wave equation follows a 
D = 1 power law as force ∝ -distance1. These power laws are all 
scale-free and exhibit consistent behavior across small to large 
distances.  

Power laws even arise in linguistical systems. For example, a 
word’s frequency of appearance in a written text is typically 
inversely proportional to its rank of usage. This means that the 2nd 
ranked word is about ½ as likely as the 1st, and the 4th ranked word 
is ¼ as likely. High rank words like “the” and “of” are used very 
often, but less frequent words like “chair” are used much less. This 
inverse proportionality, called Zipf’s Law, is approximately 
matched in text from all human languages.159 			 

Example 8.5 Power 
Law Distribution 

In the figure below, 
the circle count to 
circle area follows a 
power law relation, 
Count  =  Area -2 
Power laws lead to 
structures across 
scale, rather than 
arrangements of 
units the same size. 
 
 
 
 
 
 
 
Power Law Circles: 
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Power laws are also prevalent in biological systems. For 
example, an animal’s metabolic rate is approximately proportional to 
its mass to the ¾ power (metabolic rate ∝ mass3/4). Small animals, 
like mice, tend to have much higher metabolic rates than large 
animals, like elephants. The ratio ¾ is suspected to commonly arise 
because it is an optimal solution for a branching network to minimize 
the required transport distance to service a volume.160 Power laws 
occur in other biological processes, like heart rates, circadian 
rhythms, breathing intervals, and vocal patterns.161 Power relations 
can even been seen in ecological patterns. Taylor’s laws, which relate 
a measure’s variance (closeness to an average) to the average 
(variance ∝ averageD), can accurately describe population 
distributions, crop yields, and disease spread.162 

Power laws can occur at the boundaries between phases, 
called critical points. The Ising model of magnetic diploes in a lattice 
shows this well. At low temperatures, the dipoles will align into an 
ordered phase with large regions of positive or negative charges, 
shown as grey and white boxes in Figure 8-26. High temperatures 
cause the dipoles to move into a random disordered phase, with only 
small regions of like charges. The critical state exists at the boundary 
of order and disorder, where there are both small and large regions of 
like charges that follow a scale-free power law. It is also suspected 
that vastly different systems and particle ensembles can have very 
similar critical point behaviors that are universally shared.163  

Many kinds of complex systems are suspected to have a 
tendency towards critical states that do not require fine-tuned initial 
conditions. This so-called “self-organized criticality” occurs when 
systems have attractors that enable the system to tune itself towards 
criticality. A commonly cited example is that when dropping sand 
grains into a pile with a degree of randomness, the sizes of the 
avalanches that occur organize into a power law.164 It is suspected 
that earthquakes, financial markets, and other types of complex 
systems can be attracted to produce scale-free criticality. Critical 
behavior and phase transitions may also help explain the patterns in 
complex networks, such as neural network activity.165 

Networks are another example of complex systems with 
scale-free relations and critical behavior. Unlike randomly generated 
networks, where most nodes have about the same number of 
connections, scale-free networks follow power laws and develop 
both hubs with large number of connections and nodes with few 
connections, as shown in Figure 8-27. Internet website links resemble 
scale-free patterns, with some websites serving as large hubs.166  

Low Temperature 
(large-scale regions) 

 

Figure 8-26 Scale-free  
Critical Points 
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Critical Temperature 
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High Temperature 
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Figure 8-27 Scale 
Free Networks 
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One potential explanation for how scale-free networks arise is 

preferential attachment. Preferential attachment models a process 
where a node has a higher preference to attach to nodes that already 
have many connections. For example, people in social networks are 
often drawn to follow and connect with large influencers that already 
have many exiting connections. By following preferential attachment 
rules, networks can self-organize to have large hubs of activities that 
have scale-free power laws, deviating from what would be expected 
in a random network.167   

While scale-free power laws commonly occur in natural 
systems, there are limitations. One limitation is that measured data of 
natural phenomena, especially complex behavior, may have variations 
or outliers that does not perfectly fit power laws. Power laws of 
complex systems often provide approximations rather than providing 
an exact result. There are also other scaling relations where D is not 
perfectly fixed and changes over scales to provide a better fit for real-
world data. Even when not perfectly scale-free, complex systems 
often follow long-tailed functions, where low-probability 
configurations—like large network hubs—occur much more often 
than what would be expected from a random distribution. Long-tailed 
functions can lead to much higher chances of large deviations, like 
large earthquakes and ecological collapses, compared to what would 
be expected following random fluctuations around an average.  

 

 
 

Figure 8-28 Long-Tailed Functions   
 
Another limitation is that power laws are typically only valid 

within a given domain. For example, the ratio of animal mass to 
metabolic rate doesn’t apply to atomic scales or planetary scales, 
because there are no animals of those sizes. Physics provides a more 
formal description of limiting domains through effective field 
theories, which introduce particular energetic cut-offs, thereby 
defining the scale in which the theory is valid. For example, general 
relativity simplifies to Newtonian gravity, with cutoffs at low speeds 
compared to light. Similarity, the electromagnetic force and the weak 
force emerge as an effective field theory when setting cutoff limits 
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below the energy level of the electroweak force, which is a unified 
model where the electromagnetic force and weak force are unified. A 
hypothetical unified field theory would define common relationships 
that span all energy and spacetime scales—quantum to cosmic—but 
currently, only inconsistently effective field theories have been found 
to model nature within specific domains.   

Importantly, many models of nature are scale-dependent. In 
quantum field theory, a scale-dependent behavior is observed in the 
model of the strong force interaction. The strength of the strong force 
between quarks and gluons depends on the energy scale at which it is 
probed. This property is known as asymptotic freedom, where the 
strong force weakens at high energies and becomes stronger at low 
energies. The behavior at different scales is crucial in describing the 
properties of subatomic particles and the dynamics of the early 
universe. Scale-dependent patterns are essential to determining why 
certain phenomena occur at specific scales and not others, such as the 
size of atoms, molecules, planets, stars, galaxies, and galactic clusters. 
Science uses a combination of scale-free laws and scale-dependent 
laws to model nature.  

 
Summary 

 
Fractals can be observed in many systems and provide patterns for 
how smaller sections relate to larger collections. Fractals arise in the 
random walk pattern of atomic motion, chaotic attractors of nonlinear 
equations, dendritic crystal growth, biological morphology ratios, 
geophysical patterns, and perhaps even in the distribution of matter in 
the universe. Fractals connect to many attributes of systems, such as 
least action, chaotic dynamics, nested hierarchies, and local-to-global 
optimization, which provide an important conceptual foundation for 
complexity and connectivity.    
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Chapter 9 Order 
 

 
 

 
Complex systems in nature and society express high degrees of 
order. Order is here defined to increase when the change of entropy 
is less than zero, which relates to concentrating thermodynamic 
energy and reducing the number of microstates. Entropy measures 
can also be applied to information theory following Claude 
Shannon’s definition. Shannon entropy is the average symbolic 
information needed to define an object’s states, which includes 
macro-level states like if an electrical transistor is on or off. Systems 
in nature, such as DNA, neural networks, and computers, can 
organize and reduce both energetic and informational entropy. 

 

 
S :{DEntropy < 0 } 

 

Figure 9-1 Equation for Organization  
 
The tendency to increase order can only occur in systems 

open to the flow of energy. Following thermodynamics systems 
closed to energy and matter tend to either increase in entropy or 
maintain a constant entropy. A critical caveat is that open energetic 
systems can reduce entropy by using energy in controlled ways. For 
example, biological systems are able to maintain local decreases in 
entropy by employing chemical reactions that harness inputs of 
energy. When powered by processes that are not perfectly efficient, 
decreasing the entropy of subsystems can only be allowed by (and 
can feed off) increasing the total entropy of the universe. 

Example 9.1  
 

The feathers of a 
peacock are highly 
ordered. These 
intricate patterns 
attract mates and 
influence evolution. 

Example 9.2  

Disorder occurs when 
the same macrostate 
can arise from many 
possible microstates, 
as shown below. 

 

 
 
  
 

Mico       Macro 
 

Ordering a system 
creates a less likely 
macrostate.  
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Entropy Reduction  

 

Natural systems have a remarkable ability to increase order and 
decrease entropy. This seems to refute the second law of 
thermodynamics that the entropy will be constant or increase in 
isolated systems. For example, a drop of dye in a glass of water 
will tend to disperse over time, rather than coalesce. While 
entropy cannot decrease in isolated systems, it can decrease in a 
system open to energy. An open system (X) can decrease in 
entropy if the external system (U – X) increases in entropy 
enough so that the total isolated system abides by the second law 
of thermodynamics, as shown in Figure 9-2. For example, a 
refrigerator uses energy to create a low entropy cold interior, but 
at the cost of expelling heat that increases the total entropy.     
 

 
 

Figure 9-2 Order in Open Systems 
  

Entropy relates to exchanging heat energy for useful 
work. The Carnot heat engine exchanges heat from a hot 
reservoir to a cold reservoir through a volume controlled by a 
piston. The engine can output positive work (W) as heat (Q) 
flows from the hot to cold regions, such as a steam engine. 
Conversely, heat differences between regions can be increased 
by inputting work, like a refrigerator. The Carnot cycle 
establishes the ideal upper limit of converting heat into work 
following (W = QH – Qc), where the total change of entropy 
equals zero (DEntropyH + DEntropyC = 0). Practically, heat 
engines are not perfectly efficient, and entropy tends to increase. 
Despite inefficiencies, technologies like refrigerators can 
decrease entropy of specific open reservoirs by inputting work.   

 

 

 
 

Figure 9-3 Carnot Heat Engine  

Entropy Decrease 
Order Increase 
DEntropyX  < 0 

 
 

open  sysem Entropy Increase 
Order Decrease 

   DEntropy(U – X)  ≥ -DEntropyX 
 

Example 9.3  
 

In thermodynamics, the 
change of entropy in a 
open system relates to 
to the exchange of heat 
Q at temperature T: 
 

 DEntropy = 	DQ
T

 
 

Gibbs entropy relates to 
the sum (Σ) of the 
logarithim of px,  the 
probability that the 
system is in the xth state, 
and the constant kb. 
Information-based 
Shannon entropy uses 
this same form, but 
removes the constant. 
 
Entropy = kbΣpx log(1/px) 
 
With equally likely 
states, entropy is 
proptional to the 
number of states. 
 
Entropy = kb log(states) 
 

Hot Reservoir: TH 

DEntropyH  = 
QH

TH
  

Cold Reservoir: TC 

DEntropyC  = 
QC

TC
  

Work: W = QH – Qc 
QC  QH  

W =DEntropyH (TH -TC)   
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Entropy can be defined through a statistical approach as the 
number of equally likely microstates that result in a given macrostate, 
written Entropy ∝ log(states). For example, in a chamber with two 
sides that contain five grey particles and five black particles, there is 
just one state leading to the macrostate that the left side is filled 
entirely with grey particles, leading to low entropy. In contrast, there 
are ten possible states that lead to the macrostate that the left side 
includes three grey and two black particles, leading to higher entropy. 
These states, as well as flipping an equal chance coin, follow the 
binomial distribution. There is only one way to flip five heads in a 
row, but ten ways to flip three heads during five total flips. Separated 
particles will tend to mix and increase in entropy because there are 
more possible equally likely states for these arrangements to occur.  

 

 

 
 

 
Figure 9-4 Entropy and Microstates 

 
Entropy decreases as energy concentrates and the ability to 

perform work increases. Repelling electrically charged particles will 
have lower entropy and greater availability to do work when packed 
tightly together. Conversely, attracting gravitational objects will have 
lower entropy when moved apart. Oil and water have low entropy in 
a mixed state as there is greater potential energy to move into two 
distinct regions. While entropy tends to increase in isolated systems, 
energy can be used by open subsystems to lower entropy. Energy can 
be used to push repelling particles together, pull attracting bodies 
apart, or mix oil and water, thereby lowering entropy.      
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Figure 9-5 Entropy and Energy Dispersion 
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Powering Order 

 

The Gibbs free energy G determines if a reaction will spontaneously 
occur at a given temperature T and pressure P. The Gibbs free energy 
depends on the entropy, the molecular kinetic energy U, and the 
volume V, following G = – Entropy · T + U + P V. Exergonic reactions 
result in the negative change in free energy (DG < 0) and increase 
entropy at constant U and V. Exergonic reactions spontaneously occur 
and release energy. Conversely, endergonic reactions result in the 
positive change in free energy (DG > 0), are non-spontaneous, absorb 
energy,  and reduce entropy at a constant U and V. Reactions at 
equilibrium have no change in Gibbs energy DG=0.   
 

 
 

 
Figure 9-6 Exergonic versus Endergonic Reactions  

 
Biological systems use a combination of exergonic and 

endergonic reactions to capture and release energy for useful work. A 
common chemical for carrying energy is adenosine triphosphate ATP. 
ATP molecules can react with water to release energy, alongside 
adenosine diphosphate ADP and phosphate Pi, following the 
exergonic reaction ATP + H2O → ADP + PI + Energy. Conversely, 
energy can be used used an input, alongside ADP and Pi, to form ATP, 
following the endergonic reaction ADP + PI + Energy → ATP + H2O. 
ATP molecules provide a method to exchange and transport the energy 
generated from exergonic reactions, such as breaking down glucose 
sugar, to power endergonic reactions that require energy, like muscle 
contractions or protein synthesis.168   
 
 

    
 

Figure 9-7 ATP Energy Exchange  
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Biological processes have numerous metabolic reactions that 
harness energy that can later be used to exert work and create order. 
One metabolic reaction is glycolysis, which converts the sugar glucose 
C6H12O6 into lactic acid C3H6O3, and in the process releases energy to 
make ATP. Cellular respiration also breaks down glucose, but uses 
oxygen O2 and releases carbon dioxide CO2 to create a more efficient 
process. Organisms can gather glucose from the environment and 
through glycolysis and respiration create ATP, which can be used to 
power the creation of highly ordered structures. Additionally, some 
cells evolved the ability to absorb energy from the Sun through 
photosynthesis to create glucose, which can be broken in further 
reactions to create energy. These metabolic reactions enable chemical 
energy to be converted into useful forms for work. Cellular respiration 
and photosynthesis also have reciprocal reactants and products that 
create a balancing effect on the atmosphere’s carbon levels.  

 
              Glycolysis                            Cellular Respiration                                  Photosynthesis 
 
 

  C6H12O6 → 2 C3H6O3      C6H12O6 + 6 O2 → 6 CO2 + 6 H2O     6 CO2 + 6 H2O → C6H12O6 + 6 O2  
 

  Releases energy (2 ATP)         Releases energy (36-38 ATP)                 Requires sunlight energy                    
 

Figure 9-8 Metabolic Reactions 
 
Similar to thermodynamic entropy, ordering informational 

entropy requires the use of energy. Informational Shannon entropy 
relates to defining a symbolic message of a given probability and is 
measured through bits of data. The physical markers of all 
informational messages of data are limited by physical laws. One 
implication of the physical nature of information is that energy sources 
are required to write, store, and read data. Landauer's principle 
demands that at least energy E ³ kb · T · ln(2) is needed for an apparatus 
to create or erase one bit of data.169 This means that energy is require 
to order information. 

Ordering information is a commonly performed and highly 
useful action in biological and computational system. For example, 
information can be compressed in computers by running programs 
that reduce the number of bits required to convey a given message. 
This can save valuable memory resources and energy requirements for 
transmitting the message. DNA has also evolved to be highly data and 
energy efficient when instructing complex biochemical reactions.  
Higher-level cognitive processes often leverage the benefits of 
ordering data, simplifying messages, and creating shortcuts that allow 
less energy to process information. 
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Autopoietic Systems  

 

One question at the heart of scientific inquiry is what distinguishes a 
“living” system from a “nonliving” system. While the scientific 
community does not employ a strict definition of life, it is typically 
assumed that life needs to self-reproduce ordered and evolving 
structures. However, various machines can create order and self-
reproduce, but are generally not considered “living.” System theorists 
and biologists Humberto Maturana and Francisco Varela introduced 
the concept of “autopoiesis” in 1972 to broach this question. 170  
Autopoiesis refers to a system capable of producing and maintaining 
itself by creating its own parts. In Greek, “auto” means “self”, and 
“poiesis” mean “creation”. Autopoietic systems are not only capable 
of self-reproduction, but also making and maintaining the very parts 
they are made of.  Following Humberto’s and Varela’s theory, “life” 
occurs in the subset of physical systems that demonstrate autopoiesis.  

Autopoietic, self-making, systems contrast allopoietic, or 
other-making, systems. An example of an allopoietic system is a 
bicycle factory. The factory uses energetic and material inputs to 
create a low entropy and ordered structure of a bicycle. However, this 
bicycle is different, or “other,” from the factory. This contrasts an 
autopoietic system, such as a hypothetical living 3-D printer capable 
of producing and assembling its own machine parts. Self-making 
would include manufacturing all structures of the printer, including 
motors to run the printer and the computer chip with instructions for 
how to self-construct from simple inputs. This hypothetical printer 
could remove and install parts, as well as do any needed repairs by 
itself. While current 3-D printers have some of these abilities, no 
human-made machine has yet been classified as autopoietic or living. 
Instead, external processes accomplish some or all of these tasks, 
making these machines allopoietic. 
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Figure 9-9 Autopoietic Systems  
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One important difference between allopoietic and autopoietic 
systems is the requirement for an external agent. In an allopoietic 
system, external processes are required to make components (like 
motors or computers) to build machines and software. Additionally, if 
the machine needs to be fixed, repaired, or replicated, external support 
(like humans) is typically needed. In contrast, an autopoietic system 
can make all the utilized components, self-reproduce, self-program, 
and make new replicas of itself. The self-referencing causality seen in 
autopoietic systems is similar to the chicken-and-egg problem. The 
process of life makes the components of life, and the components of 
life make the processes of life, with no external agent.  

There is a meta quality to the information in a living system 
because it requires information needed to make itself physically. This 
contrasts current electronic computers where the informational 
processes—or software—is often not about the physical hardware 
itself. A hypothetical autopoietic computer would require software to 
be able to make its own hardware, repair itself, replicate itself, as well 
as operate mechanisms to accomplish these tasks. An autopoietic 
system’s information is similar to an embedded metalanguage, as 
matter (e.g. DNA) marks instructions about how to alter matter itself.  

In the early 1970’s James Miller provided a theory of living 
systems that defined life as systems open to exchange of matter, 
energy, and information that self-organize and self-make through 
certain critical subsystems.171 These subsystems included ingesting, 
storing, moving, and other actions to manipulate matter and energy. 
Other subsystems act on information, including data inputs, channels, 
memory, and decoders. Additional processes simultaneously pertain 
to matter, energy, and information, such as self-replication and 
managing the living system’s boundary to the environment. Together, 
these subsystems work together to enable a living system to emerge 
that can self-organize, self-make, and self-replicate.  
 
 
 

 
 
 
 

 

  Figure 9-10 Living Systems Theory 
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Biochemical Organization 

 

Living systems can self-make, and become ordered, by using energy 
in the environment. Sunlight is the primary energy source for life, 
which plants covert to chemical energy through photosynthesis. 
Animals then eat plants, which passes energy through the ecological 
food chain to the next group, or tropic level. In this process, 
approximately 10% of the total available energy is made accessible 
to the next ecological trophic level.172 While it is clear that energy 
and resources are required for autopoiesis and many biochemical 
processes have been identified, the exact set of mechanisms that 
enable life are not perfectly understood.173  

All living organisms, like animals, plants, fungi, and 
bacteria, are composed of one or more cells. The cell is the smallest 
known unit of life. The cell has numerous subsystems for self-
making components and accomplishing processes identified in 
Miller’s living systems theory. Single-celled prokaryotic organisms 
like bacteria have a membrane to define the cell boundary and are 
filled with a mixture called cytoplasm along with subsystems to 
instruct cellular processes. Eukaryotic cells, which comprise plants 
and animals, have more delineated internal subsystems called 
organelles to accomplish the tasks of life.  

Each of the organelles in eukaryotic cells, some listed in 
Figure 9-11, has specialized roles to enable the system to self-make. 
The nucleus holds DNA, the core depository of information. 
Ribosomes transcribe DNA into proteins, an essential building 
block of living systems, in places like the endoplasmic reticulum. 
From there the Golgi complex receives and sends packages of 
proteins. The mitochondria supports cellular respiration and making 
energy, the vacuoles store materials, and the lysosomes protect from 
bacterial invaders. These organelles, along with many other 
subsystems, work together to make a whole living system function. 

 

 
 
 

Figure 9-11 Animal Cell 
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Example 9.5 

 

Chemical reactions 
in living systems, like 
metabolism, protein 
synthesis, and 
replicating DNA, 
work in modular and 
interconnected 
subgroups. These 
networks are highly 
complex, nonlinear, 
and contain many 
feedback loops. 
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Cells are composed of hydrogen, oxygen, nitrogen, carbon, 
and other trace elements, and these components form four categories 
of biomolecules: carbohydrates, nucleic acids, proteins, and lipids. 
Carbohydrates, like glucose, are long chains of carbon and hydrogen 
atoms that provide chemical energy. Nucleotides, such as the 
abbreviated A, T, C and G molecules, compose nucleic acids like DNA 
and RNA. Amino acids are molecules on a scale of a dozen or so 
atoms. Combinations of amino acids, on the order of several hundred, 
spiral and fold into proteins, which serve many functions. Lastly, 
lipids compose the cellular membrane and also support biochemical 
messaging. These molecular compounds are essential for life and is 
why carbohydrates, proteins, and lipids (fats) are all needed for 
balanced nutrition. 

Cellular systems sustain organization through elegant and 
precise processes. One such process is the cell boundary, which is 
made of lipids. This membrane contains embedded proteins that act as 
miniature gates to regulate the flow of resources in and out of the cell. 
Inside the cell, carbohydrate sugars are used to generate energy to fuel 
processes. In the cell’s nucleus, DNA is composed of millions of 
nucleotides. Special proteins transcribe genetic information from 
DNA to produce amino acid chains that fold into new proteins to carry 
out specific functions in the cell. Proteins serve a variety of functions, 
such as composing the cytoskeleton, a flexible matrix that supports the 
cell’s structure and transports chemicals. These processes are related 
in a synergistic fashion to maintain a dynamic equilibrium, or 
homeostasis. Additionally, through intricate processes, the cell’s DNA 
and other core organelles can reproduce and self-replicate.  

Evidence supports the view that the biochemical building 
blocks of life can arise spontaneously within the conditions of an early 
Earth. The Miller-Urey experiment in 1953 demonstrated that amino 
acids and nucleotides can be created when adding electricity to  
common elements that would have been found on Earth prior to life.174 
Researchers have even discovered processes by which self-replicating 
RNA and cellular membranes could form within the conditions of 
early Earth.175  These experiments demonstrate that highly ordered 
living systems can arise from natural processes. Additionally, life may 
not be such a random process within the bounds of cosmology. 
Scientists estimate that the Milky Way galaxy has an estimated 300 
million or more habitable worlds that could sustain life.176   
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Electrochemical Fluids 

  

Water provides an essential medium for the organization of living 
systems. No living thing on Earth is found absent of water.177 The 
properties of water can be further understood by looking at the 
electron orbitals and the charges of water molecules. Individual water 
molecules form with a slight dipole, or a positive and negative end. 
Polar molecules and other molecules that dissolve easily in water are 
considered hydrophilic (Greek for “water-loving”). If a molecule is 
nonpolar, it repels water molecules and is called hydrophobic. The 
dynamic between hydrophobic molecules, such as lipids, and 
hydrophilic molecules, like glucose, plays an essential role in cells. 

Water and polarity impact the interaction and formation of 
biomolecules, such as proteins. Proteins start as chains of amino acids, 
which then proceed to fold, twist, and spiral into their final shape. The 
protein folding process occurs in a water environment and is driven by 
the fact that hydrophobic amino acids will tend to fold toward the 
middle of a protein and away from the surrounding water. Proteins can 
be analyzed at different parallel levels, such as the underlying 
molecular lattice and the amino acid folding structures. The solvent 
surface defines the boundary that interfaces with water molecules, as 
shown in Figure 9-13.  

Within the fluid medium of water, biochemicals interface like 
miniature magnetic puzzle pieces organized in a delicate mosaic. For 
example, the neurotransmitter serotonin has a specific shape and 
charge that fits with specialized receptors in the brain to trigger 
chemical cascades. There are many different types of reactions of 
biochemicals within a water medium, such as lock-and-key bonds 
between molecules, pumps to move specific molecules across 
concentration gradients, and enzymes that can speed up and enable 
chemical reactions. Receptors can even have resonant energy 
frequencies that match the molecules they interact with, which is 
suspected to aid in the ability to attract particular molecules.178 These 
electromagnetic particles follow various processes over time in a fluid 
medium to create an organized living system.   

The liquid crystal phase is another property of fluids that has 
important consequences for ordering and living systems. The liquid 
crystal phase is a partially ordered medium that occurs in temperature 
regions between a solid crystalline phase and fluid phase, shown in 
Figure 9-14. Liquid crystals thus straddle the line of maintaining rigid 
order and being open to change.  
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Figure 9-14 Liquid Crystals 

 

Liquid crystals are common in biological systems. 
Spider silk, iridescent insect shells, and many other biopolymers  
assemble via liquid crystals processes.179 Even cell membranes 
made of lipids feature a liquid crystal structure, as they are 
structurally connected yet malleable.180 Many of the molecules 
within an organism, from membranes to other molecules on their 
surfaces, exist in a liquid crystal state. An organism as a whole 
most closely resembles a liquid crystal state, as cells and bodies 
are both solid, like matter, and malleable, like liquid.  

Semi-ordered, liquid crystal arrangements can arise from 
the forces between the dipoles of water molecules, called 
hydrogen bonding. Hydrogen bonding gives water its surface 
tension, cohesion, and other properties. Hydrogen bonding can 
bring clusters of water molecules together to form a wide range 
of amorphous and semi-ordered clusters, like tetrahedral clusters 
shown in Figure 9-15. 181  Different cluster shapes can form 
around hydrophobic molecules, like proteins and cell 
membranes. Water clusters and liquid crystals can support the 
ordering of patterns, rather than random assortments.  

Recent findings support the idea that much of the water 
structure along surfaces may not be randomly disordered, but 
instead exists in a liquid crystal phase. On the boundaries of 
hydrophilic surfaces water can create an “exclusion zone”, where 
other structures suspended in water, like plastic microspheres, are 
repelled.182 In the book The 4th Phase of Water: Beyond Solid, 
Liquid and Vapor, Professor Gerald Pollack theorizes that 
exclusion zones are created because water molecules are oriented 
into a liquid crystal phase. Many hydrophilic surfaces are created 
in biological systems and much of the water inside organisms 
may exist in exclusion zones as a type of liquid crystal, with 
specific pathways for diffusion, flow, and transportation. This 
would redefine the notion that water in cells exists as a disordered 
array of molecules, and points to greater order and structure.   
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Morphology and Assembly 

 

Morphology studies the forms of multicellular living systems and why 
particular structures emerge. While it is known that certain genes and 
biochemicals influence morphological forms, a full understanding of 
the biological mechanisms of growth remains elusive.183 Modeling 
growth is exceptionally difficult, as biomolecular processes often 
contain nonlinear feedback loops and have high sensitivity to initial 
conditions.184  Another factor is that morphology patterns, like the 
shape of a tree, are not fixed and uniquely adapt to environmental 
conditions, such as availability to water and light. Additionally, the 
process of evolution can change how organisms develop over time, 
which has led to many interesting structures like shells, nails, bones, 
and hair. A common thread in studying growth patterns is to think in 
terms of complex systems, self-organization, and adaptive evolution. 

One organizing process in morphology is cell differentiation, 
which is a process where cells express a subset of their genetic code 
and become specialized, thereby reducing the possible states the cells 
can express. Pluripotent stem cells, or cells that exist in a pre-
specialization state, differentiate into the ectoderm line (surface layer 
cells like skin), the mesoderm line (tissues and muscles), and the 
endoderm (inner layer organs). These different lines and examples of 
cells are summarized in Figure 9-16. Specialized cells can then pass 
genetic traits on to future cell generations as they replicate, which can 
create collections of similar cells that are organized together in groups. 
Similar cells tend to adhere to one another in what is called cell 
adhesion, and this creates ensembles of specialized cells that function 
together as organized subsystems. 

 

 
 

 
 

Figure 9-16 Stem Cell Differentiation 
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Electromagnetic fields play a critical role in biological self-
assembly and organization. Inside and between cells, electrical 
potentials support various functions, such as the nervous system, 
brainwaves, and the pulse of the heart. While electromagnetic fields 
are typically understood only as a byproduct of chemical reactions, 
electromagnetic fields can also instruct morphological patterns. For 
example, coral reef growth can be accelerated in a given direction by 
exposure to an external electromagnetic field. Electromagnetic fields 
can influence the cell life cycle, cell proliferation, axon outgrowth, 
wound repair, and the establishment of left-right body asymmetry.185 

These are a few of many examples of the impact of electromagnetic 
fields on living systems and morphology patterns.   

As mentioned in Chapter 8, a common morphological pattern 
in organisms is nested structures. For example, skeletal muscle is 
composed of a nested structure of smaller rope-like muscle fascicles. 
These muscle fascicles are subdivided into muscle fibers, as shown in 
Figure 9-17. Similar nested patterns occur in the circulatory and 
nervous systems, which have large pathways that contain many 
subdivisions. These fractal-like nested patterns can effectively 
distribute resources across many scales of size and be more error-
tolerant to imperfections.186 Nested morphology creates a cohesive 
structure from small to large scales that supports holistic organization.  

 
 

 
 

 
Figure 9-17 Nested Structures Muscle 

 
At the anatomical level, living systems self-assemble to 

enable organized behavior. For example, skeletal bones and muscle 
tissue create a system of levers and pulleys to produce locomotion. 
While these results seem commonplace, functions like walking or 
swimming are highly ordered and would likely not form through the 
random arrangement of parts. This coordination of parts is much like 
a bicycle: the wheels, chain, frame, and other pieces need to be 
precisely oriented and interlinked to create the emergent property of 
locomotion. If the micro-level pieces of a bicycle were randomly 
connected, the macro-level result of motion would be nearly 
impossible to create. Biological morphological forms are similarly 
arranged in high levels of order for specialized functions.  
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Ecological Systems  

  

Entire groups of organisms can be analyzed as living 
systems. Ecology studies the organizational patterns 
across many species over multiple generations. 
Different ecosystems around the world typically 
demonstrate similar organizing principles, such as the 
flow of energy, dynamic balance, cycles of change, 
complex networks, and nested systems. The 
interdisciplinary systems theorist Fritjof Capra 
proposed several common principles in ecosystems, 
summarized in Figure 9-18. Together, these principles 
set a foundation for studying ecosystems as complex 
networks that are open to the flow of energy and 
evolve over time. 

 

Figure 9-18 Organizing Factors in Ecology 
 

 Food webs categorize different organisms in 
an ecosystem based on sources of energy. Food webs 
span plants (energy from the sun), to herbivores 
(energy from plants), to secondary predators (energy 
from herbivores), to primary predators (energy from 
secondary predators). While food webs are often 
pictured as a hierarchical pyramid or linear chain, they 
are better modeled as multilayered networks to 
represent the various types of interactions between 
organisms, as shown in Figure 9-19. Food web 
networks highlight the importance of connectivity and 
that a single species can influence many others.   

Ecosystem food webs have a reciprocal cycle 
between life and death. When animals and plants die, 
detritivores like mushrooms and worms process the 
biomaterial which replenishes the soil with nutrients 
for future plant growth. This enables a sustainable and 
renewable system of energy exchange. The cycle of 
life and death also enables species to evolve over time 
and adapt to new environmental conditions.  
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Figure 9-19  Food Webs  
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A critically important organizing factor in ecosystems is 
that living systems evolve to suit their environment. The fossil 
record indicates that seemingly unrelated species like fish, birds, 
and mammals all share a common ancestry. Indeed, evidence 
supports that all organisms evolved from single-cell bacteria. 
Natural selection, posed by Charles Darwin in the mid-1800s, is 
the idea that less favorable genetic traits from random mutations 
have a lower chance of being passed on, causing evolution over 
many generations.  

While natural selection is often imagined to be smoothly 
incremental, the fossil record reveals dramatic evolutionary leaps 
and extinctions in short time frames.187  For example, the ability 
of cells to perform photosynthesis led to a rapid proliferation of 
new species. Another evolutionary jump occurred by the 
introduction of mitochondrial bacteria into animal cells, which 
provided the animal hosts with new functionalities for processing 
energy. Evolution can have dramatic changes over short periods, 
such as the mass extinction of dinosaurs, which is hypothesized to 
be caused by an asteroid impact and was followed by the rapid 
speciation of mammals. The evolution of living systems can be 
exposed to chaotic, volatile, and cataclysmic changes.  

Evolution has produced highly connected networks of 
interactions between organisms, such as competition and mutual 
support. In coral reefs, for example, many types of fish and corals 
live in proximity with various interactions, as depicted in Figure 
9-21. Mutual support can be seen in the sea anemone and 
clownfish.188 Sea anemones provide protection to clownfish as 
their tentacles only harm clownfish predators. At the same time, 
the clownfish cleans the anemone and wards off anemone 
predators. The vast web of ecological relations underscores the 
need to think in terms of connectivity, feedback, and emergence.  

Ecosystems are deeply related to geologic and 
atmospheric systems. For example, plants contribute to carbon 
dioxide fixation and alter the gas content within the Earth’s 
atmosphere. Limestone rock is formed by the conglomeration of 
animal shells at the bottom of the sea. The abundant plant life in 
the Amazon rainforest generates moisture that influences rain 
cycles. 189  Over history, biology has become intertwined with 
Earth’s processes including sedimentation, carbon exchange, 
oxygen exchange, and ocean salinity. Earth systems science and 
the so-called “Gaia theory” study how biology and the planet co-
exist together as an interconnected system.   
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Intelligent Control  

 

Intelligent systems can sense and adapt to the environment to 
create highly ordered states. Intelligent behavior is defined here 
to mean the ability for a given system to sense the environment 
to inform controlling specific outputs, decision-making, 
problem solving, or predictions of cause and effect. In this 
definition, synthetic systems like computers can perform 
intelligent procedures and intelligence is not limited to human 
cognition. In biological systems, intelligent behavior is 
exhibited in cells, organisms, and ecological groups. Intelligent 
systems can output particularly advantageous and rare states, 
which enables creating high levels of order in the environment.  

Cybernetics is an interdisciplinary field that works to 
understand intelligent systems. The term cybernetics was 
coined by Norbert Wiener in 1948 to describe the scientific 
study of control and communication in the animal and the 
machine. 190  Cybernetic processes can interface with both 
engineering and biological systems, as well as broader 
psychological, sociological, and anthropological systems. 

An integral concept in cybernetics is a control system, 
which senses the environment and uses a controller to determine 
specific outputs. A simple example is a microphone, control 
board, and speaker, as shown in Figure 9-22. The microphone 
senses sound in the environment and the controller determines 
the output of sound by a speaker. A cybernetic loop occurs when 
the control system’s output is in feedback with the inputs, such 
as a microphone picking up a speaker. Another example is that 
some bacteria can sense toxins or favorable chemicals that 
control small hairs on the cell, called flagella, which move the 
bacterium to a more suitable location.191 When the bacterium 
senses a favorable environment, it then stops. The cybernetic 
feedback of sensing and changing the environment is a critical 
process for how intelligent systems perform organized actions. 

 

 
 

 
 

Figure 9-22 Cybernetic Loop 

   
                              Sensor                  Controller                     Action            
                   Input                               Output                         
             

                                           
 
 
 

                         Feeback Loop 
 
 
 
 
 
 
              Intelligent feedback and organizing processess 

Example 9.7  
 

A control system 
manages devices, like a 
thermostat controller 
turning on a heat in a 
room. While controllers 
can be modeled by their 
mechanistic forces, the 
system is goal seeking 
and resembles intrinsic 
purposes of teleology. A 
control system can have 
different control loops, 
that can increase order.  
 
Closed-Loop Control: 
 

Outputs can influence 
the inputs and sensor  
(e.g. thermostat) 
 
Open-Loop Control: 
 

Output doesn’t 
influence the sensor  
(e.g. fixed timed) 
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Cellular systems present a wide array of intelligent and 
organized behavior. Bacteria can perform a range of specialized 
actions, like creating tough cellular walls or changing their immunity 
to adapt to harsh conditions. More intelligent properties emerge when 
bacteria are together in a colony, such as collective decision making, 
adaptation, anticipation, and problem solving.192 For example, groups 
of bacteria can send signals to turn genes on and off and even swap 
genes to promote antibiotic resistance. Researchers have even 
proposed that bacteria use chemical signaling to establish collective 
memory, group identity, and colony recognition.193 These intelligent 
actions, and many others, allow bacteria to effectively self-organize, 
self-regulate, survive, and reproduce.  

Plants are another prime example of intelligent behavior. 
Plants can sense environmental conditions like moisture, light, 
oxygen, gravity, sound, and chemical signals to accordingly adjust 
growth patterns.194 Plants have photo-sensitive compounds that react 
to frequencies of light to determine growth and flowering cycles. 
Additionally, plants can sense the passage of time by using chemical 
processes that create circadian clocks. These sensory mechanisms 
enable plants to prepare for daily and seasonal cycles. Groups of plants 
can also perform intelligent and organized behaviors. For example, 
chemical tracers have allowed scientists to track nutrient exchange 
between the collections of trees in what is now understood to be an 
intricate underground communication signaling system mediated 
through fungal mycorrhizal networks.195 This network of exchange 
and interdependence of plant and fungal life supports the survival and 
intelligent growth of the forest as a whole. 

Animals have developed increasingly complex methods to 
sense the environment and act with intelligence. Through the nervous 
system and sensory organs, like the eye and ear, animals can sense the 
environment in ways not available to plants. Animals like fish, birds, 
and bees create detailed spatial memories to inform how to forage and 
migrate. Mammals, birds, and fish can even utilize tools to solve 
problems. For example, elephants can move boxes to stand on in order 
to solve the problem of retrieving out-of-reach bananas.196 There are 
detailed modes of animal communication, like bird songs, bee dances, 
dolphin vocalizations, or sea lion barks, which convey messages for 
ordered behavior. Many animals, like the great apes, can recognize 
themselves in a mirror, as opposed to acting as if the reflection is 
another ape, which shows a high degree of self-awareness. These 
sensory abilities allow animals to analyze and order their surroundings 
in intelligent and controlled ways.  
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Groups of animals can organize through swarms to 

optimize collective activities. For example, land mammals 
can find efficient ways to travel long distances and forage 
for food by organizing into large herds. Fish often gather in 
large schools for food and protection. Swarm intelligence, 
which occurs as collective groups respond to environmental 
conditions, can aid problem solving. This can be seen in 
how groups of birds fly together as flocks to improve 
navigation and aerodynamic efficiency. Ant colonies self-
organize in many ways and construct intricate underground 
tunnels. Swarm intelligence is one means for systems to 
self-organize and effectively address problems. 

Humans have developed particularly high levels of 
intelligence, order, and self-organization. The complex 
physical and informational interactions of humans can be 
studied through the emergent models of anthropology and 
social sciences, which are comprised of systems of social 
agents as well as associations to abstract ideas. Humans 
have collectively organized into large groups and create 
economic systems of exchange. Humanities’ abstract 
communication tools, like writing, has supported activities 
like building infrastructure and creating political systems. 
Language, which refers to abstract concepts via an open-
ended system of symbols, plays a prevalent role in human 
intelligence and allows a practically limitless medium to 
express concepts and cultural ideas. Humans have 
developed storytelling, written histories, and scientific 
knowledge to pass down informational artifacts over time.  

In humans, cognition primarily occurs in the central 
nervous system (brain and spinal cord), which processes 
sensory data and memory to direct action. Sensory organs 
serve as the mechanism to receive inputs. These inputs then 
pass through the cognitive system, which informs future 
decisions from past experiences. After processing 
information, biological motor functions enable the output of 
changes to the environment, as graphically displayed in 
Figure 9-24. This sequence is similar to cybernetic 
feedback, with inputs, a controller, and outputs. Cognitive 
processes give humans the ability to design highly ordered 
energetic and informational states in the world. 

 

Environment 

Energy 
Material 

Example 9.8   

Self-organization occurs via: 
 

– Strong dynamic 
nonlinearity, like feedback 

 

– Balance of expanding and 
consolidating forces  

 

– Multiple interactions 
 

– Availability of energy to 
overcome the tendancy for 
disorder to increase  

 

Figure 9-23 Swarm Intelligence 

Herd of Land Mammals 

School of Fish 
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Figure 9-24 Cognitive Organization and the Environment 
 
Cognitive processing is more complex than a fixed cybernetic 

controlling system because the decision-making device, or brain, is 
under continuous change. This means that the same sensory input can 
produce different outputs at different times, due to the controller 
(brain) reformulating the decision-making rules. The brain is 
continuously processing information through the stages of sensory 
memory, short-term memory, long-term memory, unconscious 
memory, as well as forgetting information, to create efficient models 
of the world. Cognitive processes allow humans to make sense of the 
environment and adaptively design ordered systems in a changing 
world.  

 
Summary 

 

Ordering is a property involved in many complex systems and plays a 
critical role in the emergence of life. Biological systems create highly 
ordered states through energy-harnessing reactions and other novel 
processes that bend the laws of chemistry to fantastic extremes. While 
abiding by the laws of physics and entropy, life is able to use energy 
and resources in an open exchange with the environment to create 
patterns that self-organize and self-reproduce. Collections of plants 
and animals form ecosystems that create new emergent patterns and 
evolutionary trends. Intelligent control systems are able to sense the 
environment and effectively regulate and govern a wide range of 
ordered activity. Living systems use control and communication to 
intelligently sense and react to the environment, evolve into more 
advantageous patterns, and even create socioeconomical systems 
capable of generating knowledge of nature. Ordering is a critical 
concept to grasp how complex open systems, such as life and control 
systems, organize the cosmos.  
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Chapter 10 Information 
 

 

 
 

 
Information arises when the states of material objects are used to 
mark and process symbolic messages. This can be seen in DNA 
sequences, neural networks, or computers that transmit, store, 
and process informational states. Information theory is at the 
frontier of many disciplines studying complex systems, from 
quantum physics to computer theory to cognitive science. Many 
informational systems function with high levels of connectivity, 
interdependency, and emergent properties, which reinforces the 
need to analyze nature through a systems-based worldview.   

Information relates to the quantity of unexpected results, 
or surprisal probability, that is addressed by a piece of data. If, 
for example, an event has a 100% chance of occurring, then no 
information will be provided by knowing that the event occurred. 
However, if it has a 50% chance of occurring, then when the 
event occurs it would provide information, and specifically one 
bit of information. Shannon entropy H(X) quantifies the average 
expected information over many variables. An event with a lot of 
information will have a high Shannon entropy, while an event 
with less information will have lower Shannon entropy. A 
system is considered to possess information when the Shannon 
entropy is greater than zero, as shown in Figure 10-1.  

 

 
S : { H(X) > 0 } 

 

Figure 10-1 Equation for Information  

Example 10.1  
 

The brain is formed 
with trillions of 
connected neurons 
and can process 
information as a 
single cohesive 
system. 

Example 10.2 
 

An outcome’s message 
that is surprising has 
more information. An 
event with 50% chance 
of occurring (A or B) 
conveys one bit of 
information. An event 
with that has a 25% 
chance (A, B, C, or D) 
conveys 2 bits. An event 
with 100% chance of 
occurring (A or A) has 
no information. 
 

Equal Choices       H(X) 
           (A)              0 Bit 
        (A, B)           1 Bit 
   (A, B, C, D)       2 Bit 
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Informational States 

 

Claude Shannon introduced the formal study of information in the 
1948 paper Mathematical Theory of Communication.197   This 
paper introduced the unit of a bit, which can measure the quantity 
of information. Information theory provided the foundation for 
modern communication and computational systems, including 
cell phones and the Internet.   

Shannon’s essential insight was to quantify information 
based on how surprising a given event and message is expected to 
be. The information content, or self-information I(x), was chosen 
to meet the axioms that: an event with a 100% probability yields 
no information, the probability of an event is inversely correlated 
to the information it yields, and the information of two 
independent events together equals the sum of the information of 
each individual event. The formula I(x) = log(1/px) follows these 
axioms, as the logarithm allows independent probabilities to 
linearly sum together. When each state is equally probable, such 
as rolling a uniform die with equal chances for every side, the 
information is proportional to the logarithm of the number of 
states, I(x) = log(states). The unit of the bit uses the base 2 
logarithm to quantify information, following log2(1/px) or 
log2(states), though other bases can be chosen. 

Shannon entropy is the average expected information 
equal to Σpxlog(1/px) = p1log(1/p1) + p2log(1/p2) + … . For 
example, consider a symbol that has an equal chance of being one 
of four choices. When the symbol is chosen from the letters (A, A, 
A, A) there is a 100% chance of an outcome of A, so no 
information is provided by the selection event. When chosen from 
(A, A, B, B) there is a 50% chance for an outcome of A and a 50% 
chance for B, creating 1 bit of Shannon entropy. When choosing 
from (A, A, A, B), there is a 75% chance for an outcome of A and 
a 25% chance for B, creating 0.81 bits of information, as shown in 
Figure 10-2.  On average, the third scenario provides less 
information than the second, because A occurs ¾ of the time, 
rather than ½ of the time.  

 
Equal Choices H(X)  =   Σ pxlog2(1/px) 

(A, A, A, A) 0 Bits = (1)log2(1) 
(A, A, B, B) 1 Bits = (1/2)log2(2) + (1/2)log2(2) 
(A, A, A, B) 0.81 Bits = (3/4)log2(4/3) + (1/4)log2(4) 

 

Figure 10-2 Shannon Entropy  

Example 10.3  

The information I(x) of 
an event x is the log of 
one divided by the  
event’s probability px: 
 

I(x) = log(1/px) 
 
Shannon entropy H(x) 
is the average  amount 
of information for 
multiple events:  
 

H(X)  = Σ px log(1/px) 
 

Shannon entropy has a 
non-equal, and often 
opposite, relation to 
thermodynamic 
entropy.  Shannon 
entropy is the bits of 
data provide by a 
message at any level, 
while thermodynamic  
entropy is the missing 
information about the 
energetic microstates. 
 

H(X)  ≠ EntropyThermo 
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Matter and energy (e.g. a written book, a strand of DNA, or a 
radio wave) can serve as markers of information and be encoded and 
decoded into symbolic messages. The Shannon-Weaver model, 
shown in Figure 10-3, studies communication systems of transmitters, 
which encode the messages to be sent over a channel, and receivers, 
which decode the message. Noise can also degrade information as the 
message travels over the channel. In a telephone call, for example, 
sound signals are encoded, sent over a radio wave channel that can be 
exposed to noise, and decoded for the receiver. Communication 
channels can be very efficient when the marker of information is easy 
to send, such as the radio waves of telephone calls. However, markers 
of information are limited to properties of matter and energy, which 
tend to increase in entropy and degrade over time, leading to noise. 

 

 
 

 
 

 
Figure 10-3 Shannon-Weaver Communication Model  

 
Mutual information measures the information shared between 

the sender (xInput) and recipient (yOutput) over a channel. If x and y are 
independent, then observing x does not give any information about y, 
and the mutual information is zero. However, if x fully determines y, 
then the information of y is conveyed by x. The mutual information of 
x and y, written I(x,y), also equals the Shannon entropy of x minus the 
conditional entropy H(x|y), which is the amount of information needed 
to describe x with y known. Additionally, noise can increase entropy 
and over a channel following yOutput = xInput + noise. Shannon’s noisy-
channel coding theorem establishes the rate at which communication 
can occur with minimal errors. It is critical that physical markers 
provide more symbolic information than background noise, which 
requires open energetic systems to counter entropy and noise. 

 
 

 
 
 

Figure 10-4 Mutual Information  

Channel 
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xInput yOutput = xInput + noise 
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Quantum Information 

 

Information plays an essential role in quantum systems. Quantum 
particles are modeled through wave packets of probability, such 
as a Gaussian distribution where the probability decreases farther 
away from the average. The Schrödinger equation describes how 
the quantum wavefunction Ψ evolves over time and is derived by 
applying the principle of least action to a quantum field. To 
calculate polarization and intrinsic spin, quantum waves are 
described by both real and imaginary (i2 = -1) components. 
Following Born’s rule, a key postulate of quantum mechanics, the 
probability of finding a particle at a given region is proportional 
to the square of the wavefunction Ψ2, which removes the 
imaginary component and leaves only a real component. In an 
observed interaction, quantum probability fields collapse to define 
the position and momentum of particles within a certainty range. 

 

    
                  Gaussian Distribution                  Imaginary and Real Axes 

            Figure 10-5 Quantum Probability Field 
 

Quantum theory questions the premise that matter has a 
well-defined location in isolation. Two common interpretations of 
quantum theory are that particles do not have a well-defined 
location when not interacting (the Copenhagen interpretation) or 
that particles exist in well-defined locations when not interacting, 
but are influenced by hidden variables (hidden variable theory). 
However, Bell’s 1964 theorem showed that quantum theory can 
make predictions which would be violated if local hidden 
variables existed. 198  A hidden variable solution to quantum 
mechanics could be non-local, meaning particles can be 
influenced instantaneously across distances, but no theories have 
so far developed greater predictive power. 199  Quantum physics 
supports the view that particles either do not have a position when 
not interacting, or they are governed by non-local variables. Both 
options present a radical shift from classical physics, where 
particles and fields have well-defined values at each point in time 
and are influence by local forces.    

Im Ψ  
 
 
 

Re Ψ  
 
 
 

Example 10.4  

The Schrödinger 
equation models how 
the quantum wave 
function Ψ changes 
over time from the 
system’s Hamiltonian 
H,  a measure of the 
total energy, and 
Planck’s constant ħ. 
 

H(Ψ) = iħ ¶Ψ / ¶t 
 

The equation describes 
one singular field, that 
can have many wave 
packets and also allow 
for entanglement. 
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Another view of quantum theory is the information 
interpretation, where the primary building blocks of the universe are 
information interactions rather than local, isolated, objects. In these 
models, quantum measurement events occur as information waves 
interact. Probability fields can be defined, within uncertainty limits, 
through informational interactions with other probability fields. 
Quantum information theory contrasts the Newtonian matter-based 
view where particles have defined locations and exist when not being 
measured, as summarized in Figure 10-6. Quantum mechanics 
supports the systems thinking concept that identity is acquired via 
interdependent relations, because interactions are required to collapse 
a quantum probability field to an outcome.  

 
 
 
 

 
 

  Signal emitted                      Signal measured         Signal emitted                                    Signal measured   
 

                           Matter-based            Quantum Information 

Figure 10-6 Matter-based vs. Quantum Information Interpretations   
 

Another unexpected behavior of quantum systems is instant 
action at a distance. Distant quantum particles can affect one another 
through entanglement. For example, after two coupled photons 
scatter apart, measuring one photon state will instantly provide 
information about the other photon’s state due to conservation laws. 
Entanglement is not just theoretical and has been experimentally 
demonstrated.200 Due to its non-local nature, entanglement reframes 
the traditional view that particles are acted upon only by neighboring 
forces and fields. Quantum theory points to a view of nature that is 
entangled, non-local, and inherently probabilistic.  

Quantum information—measured through von Neumann 
entropy—is posed to be conserved, which seemingly contradicts the 
increase of thermodynamic entropy. These ideas can indeed coexist 
because in thermodynamic entropy refers to how much information 
is missing prior to measurement, while in quantum theory, von 
Neumann entropy relates to the states present in measurement. 
Interacting quantum states can become entangled, which reduces the 
number of measurable outcomes. This allows quantum information 
to be conserved while thermodynamic entropy increases. 

 

Particle Information 

 
      Exists as a local                                                Exist with interactions  

          and individual object                                                   of information signals 
                   
                 

 
 
          

  

Example 10.5 

 

Relational quantum 
mechanics is the 
view that physical 
variables only take 
on values through 
interactions between 
multiple systems. 
 
  

Example 10.6 
 

Von Neumann 
entropy EVN analyzes 
the uncertainty of 
quantum probability 
density matrices p 
using the Trace (tr), 
which is a type of 
matrix summation: 
 

EVN  =  tr(px ln(1/px )) 

 
 

Von Neumann 
entropy measures 
the total measurable 
information in a 
quantum system— 
which is conserved.  
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Holographic Equivalence   

 

Information plays a role in modeling spacetime, especially black 
holes. Black holes are objects with enough mass to create an event 
horizon, a boundary where gravity is so strong it traps light. Similar 
to energy conservation, information is posed to be conserved in 
quantum physics.201 However, black holes create an information 
paradox because the event horizon prevents signals from escaping, 
effectively destroying information that enters. To add to the puzzle, 
Stephen Hawking showed that black holes absorb particle-
antiparticle pairs that arise from quantum uncertainties on the event 
horizon.202 This effect, known as Hawking radiation, means that 
black holes radiate energy and evaporate, seemingly losing the 
internal information. A suspected solution to this information 
paradox is the holographic equivalence. 203  The holographic 
equivalence allows information of a volume to be encoded on 
boundary surfaces and to conserve information in black holes.  

A hologram has a number of interesting properties. One 
property is that a 2-D holographic plate, or surface, can encode the 
information of an entire 3-D volume. Additionally, each part of a 
2-D holographic plate has the information of the entire 3-D 
hologram. Even a small section of the holographic plate will retain 
an image of the entire 3-D hologram, but will be a lower resolution, 
as shown in Figure 10-7. This property is similar to how each piece 
of a fractal can reflect the whole pattern. Holographic information 
also displays symmetries that relate to entangled quantum 
systems.204 In both holograms and entanglement, the whole system 
relates through non-local relations. Changing the underlying 
projection pattern can instantly change each sub-division.  

 
 
 

 

 
 

Figure 10-7 Holographic Information Encoding   

Each subdivison encodes the whole projection  
2-D sheet 
hologram 

 
 
 

Example 10.7  

A black hole’s entropy 
is proportional to the 
surface area of the 
event horizon. This 
result suggests that 
the information and 
entropy of the entire 
volume is encoded on 
the boundary, similar 
to how a holographic 
surface encodes an 
entire volume.   

 

 

Laser 
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The holographic, or Ads/CFT, equivalence introduces new 
ideas of how information is encoded in space. The correspondence 
allows a version of string theory in a type of spacetime, called Anti-de 
Sitter space (Ads), to be equally represented as a holographic 
boundary following a conformal field theory (CFT). Following this 
idea, all the information within a given space can be equally 
represented as a holographic encoding of a boundary surface. This 
solves the black hole information paradox because matter on the inside 
of a black hole can be conserved on the boundary and later released 
via Hawking radiation, while never being truly destroyed. Extending 
this idea further, all the information within the universe may be 
encodable on the cosmological boundary. 205 Anti-de Sitter space 
(Ads), the space inside holographic boundaries, is locally equivalent 
to 4-D Minkowski spacetime (described in Chapter 5) and makes 
observations compatible with accepted cosmology. 206  The 
holographic equivalence proposes a new symmetry, where volumetric 
information can be equally mapped to holographic boundaries. 

 
 
 

 
 
 
 
 
 

Figure 10-8 Holographic Universe 

Black hole boundaries and the holographic principle has 
implications for the maximum amount of information that can be 
stored within a bounded space. The Bekenstein bound states that the 
maximum entropy is proportional to the surface area and energy. The 
amount of Shannon entropy, which relates to macro-level degrees of 
freedom (e.g. transistor states) could get closer to, but never surpass 
the thermodynamic entropy, which relates to the degrees of freedom 
of the underlying energy. The Bekenstein bound sets a limit to the 
maximum amount of information that can be contained in a space or 
be required to describe any energetic microstates contained. The 
Bekenstein bound has very large values. For example, containing the 
energy of 1 kilogram (following E = mc2) in a sphere with a radius of 
1 centimeter creates a maximum entropy of ~1052 bits. This is truly a 
mind-boggling amount of data, and 2020 estimates of world digital 
data storage is 27 orders of magnitude less at ~1025 bits. 
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Computational Systems 

 

Computational systems physically mark and manipulate information 
to follow logical procedures. In 1938, Claude Shannon showed that 
electrotonic switch arrangements can represent logical procedures and 
Boolean algebra, where 1 is true and 0 is false.207 Networks of circuits 
can be used to perform logical operations (and, or, implies, ect.) as 
well as store memory. Modern computers receive inputs of 
information via keyboards and other sensors, use circuit boards to 
perform logical processes, and output the results of those processes to 
screens and other mediums. By processing on-off states (1 or 0) of 
these transistors, computers can perform many complicated actions 
like solving math equations, analyzing languages, and supporting 
communication. Computers have revolutionized society and increased 
the ease of processing and sharing information.  

Processing information is an emergent behavior that arises in 
a subset of physical systems. For example, a mess of wires cannot 
compute non-trivial information unless properly arranged. If properly 
arranged, a physical circuit can be equivalently mapped to an 
emergent computer model of Boolean algebra. In its general form, 
information and computation are substrate-independent, and can be 
equivalently represented on any physical system capable of marking 
and manipulating messages such as electronic circus, floppy disks, 
flash drives, beads of a rope, and DNA strands. However, the 
processing of information in living systems is related to the substrate, 
because following autopoiesis the information procedures (software) 
must self-make the physical system (hardware). 

Informational systems can widely vary in data storage density, 
speed of reading or writing data, and power usage. Examples of these 
metrics for hard disks, flash drives, and DNA are shown in Figure 
10-9. While flash drives are more efficient than hard disks, neither can 
compare to the density or power efficiency of DNA.208 Optimizing the 
speed, density, and power to process data are critical factors in creating 
information systems, in everything from computers to cells.  

 
Information Medium: Hard Disk  Flash Drive DNA 
Read-Write Speed: (bits / second) 250 10,000 >10,000 
Data Density: (bits / cm3) 1013 1016 1019 
Power Efficiency: (gigabytes / watt) 25 50 >1010 
Storage Lifetime: (years) >10 >10 >100 

 

 

Figure 10-9 Table of Information Mediums  
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Since the early 1980s, engineers have explored building 
quantum computers, which exploit the properties of superimposed and 
entangled quantum systems. While a bit can exist in two states, 0 or 1, 
a quantum bit, or qubit, can exist in a superposition of possible 0 to 1 
states depending on the other qubits. A classical bit will only depend 
on its own value and a function that translates the bit to a 0 or 1 value 
only depends on the value of the bit. In contrast, the value of a qubit 
depends on the values of the other qubits, rather than being fixed and 
independent. This means the function to find the value of one qubit 
can include all the other entangled qubits, as shown in Figure 10-10. 
Due to the vast number of superimposed states and novel properties 
like parallel processing, quantum computers can use new algorithms 
to solve problems not available to classical computers.  

 

 
   Classic Linear Bits      Quantum Entangled Qubits 
Bit 1 =  f1(Bit 1)   Qubit 1 

 

= 
 

  f1(Qubit 1, Qubit 2, … Qubit n) 

Bit 2 =   f2(Bit 2)   Qubit 2 =   f2(Qubit 1, Qubit 2, … Qubit n) 
Bit 3 =   f3(Bit 3)   Qubit 3 =   f3(Qubit 1, Qubit 2, … Qubit n) 
….. ….. …..   ….. ….   …. 
Bit n = 

 

  
 

fn(Bit 1)   Qubit n =    fn(Qubit 1, Qubit 2, … Qubit n) 
                      

 

Figure 10-10 Quantum Qubits   
 
Information systems have a wide spectrum of data units. In a 

binary computer, each n bit has two states (0 or 1) that create 2n total 
states. In DNA, each n gene has four possible states of A, T, C, and G 
that create 4n total possibilities. Additionally, three DNA states couple 
to create 64 units (43), called codons, that instruct which amino acids 
are used to build proteins. In the brain, each neuron has approximately 
7,000 synaptic connections.209 This means the number of connection 
states between n neurons scales to ~7000n, generating extraordinarily 
high results. In a quantum computer, each qubit’s state is defined over 
a fully entangled probabilistic wavefunctionY. 

 
 

Information System 
Computer DNA Brain Quantum CPU 

    

Data units Bit Nucleotides Neuron Qubits 
States per unit 0, 1 A, C, G, T ~7,000 Y = f (n) 
States of n units 2n 4n ~7000n 2n 
Interaction of units Linear Coupled Network Entanglement 

 

 

Figure 10-11 Computing Units of Different Information Systems   
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Computational Complexity 

 

One measure of algorithmic information is Kolmogorov 
complexity, which refers to the minimum set of symbols needed to 
transmit a message without losing detail. 210  For example, the 20-
character string [xyxyxyxyxyxyxyxyxyxy] can be compressed to the 
7-charater string with instructions to print “p” the string (xy) 
multiple times [p(xy)10]. By contrast, the 20-character string 
[vdfhfqstonwogjwetbqg] cannot be compressed and has greater 
Kolmogorov complexity. An example of data compression occurs 
when making ZIP files in a computer, which works to reduce the 
total bits of data, and lower the Kolmogorov complexity, for a file.  

Intricate patterns can have surprisingly low Kolmogorov 
complexity. For example, the irrational number √2 creates an 
endless and non-repeating sequence of digits 1.414213…, but this 
sequence can be reduced to a short algorithm to calculate digits with 
increasing precision. Similarly, fractal patterns have efficient data 
compression sequences because rules are repeated to produce 
intricate details from small to large scales. Many systems utilize 
efficient sequences to form seemingly complex patterns with low 
amounts of data resources.  

Informational systems often employ clever sequences to 
reduce algorithm processes. For example, DNA sequences do not 
delineate every cellular position and the anatomy in the organism, 
but rather provide basic rules for self-organizing.211  Similarly, the 
brain has various shortcuts, or heuristics, for common problems it 
needs to solve. These data-efficient strategies lower memory use.  

The required steps, or time, to complete a computation is 
another complexity measure. One classification of these problems is 
P = NP or P ¹ NP, which asks whether every problem for which a 
solution can be checked quickly in polynomial (P) time can be 
solved in polynomial time, or if an inefficient nonpolynomial (NP) 
equation is required. The generation of even numbers is P = NP, 
meaning the results are both quickly checkable (divided by 2) and 
quick to generate (any number doubled). On the other hand, the 
generation of prime numbers is believed to be P ¹ NP, as there is no 
quick calculation to find new prime numbers of high value, even 
though there is a time efficient algorithm to check if a number is 
prime (divisible only by one and itself). Another P ¹ NP problem 
occurs in the game of Sudoku, a puzzle of digits placed in a 2-D grid 
following a set of constraints. A winning Sudoku solution can be 
efficiently checked, but solutions are difficult to generate.212  

Example 10.8  

Time complexity 
refers to the number 
of steps, or time t, to 
solve an algorithim 
with an input size n. 
Time complexity 
classes include:  

 

Linear: The time to 
solve scales at the 
same rate as the 
input, t = cn, where 
c is a constant. 
These problems are 
very fast to solve.  
 

Polynomial (P): The 
time scales faster 
than the size of the 
input, t = nc, but is 
efficient to solve. 
 

Nonpolynomial (NP): 
The time scales 
exponentially, 
following  t = 2n^c. 
These algorithms are 
inefficient, and are 
not faster than 
brute-force testing 
all possible solutions. 
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A computational problem is reducible when there is an 
algorithm to transform it into another solved problem. For example, if 
problem A is unknown, but can be transformed into problem B with a 
known solution, then problem A can be solved. Turing reducibility 
takes this further and is the ability to reduce any given problem to a 
single yes or no output after repeating a finite number of computation 
steps. Some problems have a decidable yes or no answer, while other 
problems, like the halting problem, are irreducible with no finite 
algorithm and undecidable to a final yes or no solution.  

Computation irreducibility, a term coined by Stephen 
Wolfram in A New Kind of Science, distinguishes systems that cannot 
be reduced with efficient algorithms. Many models of complex natural 
systems, such as nonlinear networks, fluid turbulence, and protein 
folding, cannot be solved via a finite number of steps and are not 
Turing reducible. Traditional science tends to focus on systems that 
can be reduced by efficient algorithms and have linear components. 
Wolfram argues that science should explore complex, nonlinear, and 
irreducible patterns.  

Computation irreducibility occurs in uncomputable numbers, 
which cannot be solved in an efficient manner. Computable numbers, 
like Euler’s number (e = 2.718…) and pi (π = 3.1415…), can be solved 
with efficient algorithms. Increasingly precise results can be found by 
repeating rules, even if they are irrational with an infinite number of 
non-repeating digits. In contrast, Chaitin’s constant—the sum of the 
probabilities that a halting program will stop—and the “busy beaver 
function”—which finds the largest output of a given halting 
program—are uncomputable. These uncomputable numbers do not 
become increasingly precise over incremental steps.  
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Uncomputable 
Algorithms 

Chaitin’s constant (Ω) =	 # 2-|p|
 

p halts

 |p|= size of bits of program that halts  

Busy beaver (BB) =	# 2-BB(n)
∞

n=1

		 BB(n) = largest halting program of size n 

 

 

Figure 10-12 Computable vs. Uncomputable Numbers  
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Artificial Neural Networks 

 

Information can be manipulated in useful ways with artificial neural 
networks. Artificial neural networks are loosely inspired by biological 
neurons and process information through a network of nodes 
connected by specific rules. Much like the brain's neurons, artificial 
neural networks can solve complex problems, like pattern recognition, 
text generation, image creation, and even improve accuracy over time. 
Artificial neural networks are used in artificial intelligence (A.I.) 
software to solve complex problems across a wide range of fields. 
 Artificial neural networks are composed of multiple nodes 
that have specific rules to transform input data to output results. The 
nodes in neural networks can reference one another, represented by 
arrows, to solve problems, like image recognition. For example, 
consider an image of two pixels that can either be black or white and 
the desired outcome is to determine if the image has a solid or 
checkered pattern. To do this, the first layer of nodes senses if each 
pixel is black or white. From there, each of the nodes on the second 
layer references two of the previous nodes, represented by lines, to 
determine if the input image is solid black, solid white, or one of two 
checkered patterns. Finally, the output nodes reference the results 
from the previous layer to determine if the pattern falls into a solid 
output or checkered output category. The checkered example in 
Figure 10-13 follows the nodes’ rules from input to output result.  

 

 
 

  
 

Figure 10-13 Simplified Neural Network 
 

To take a more complicated example, consider the task of 
identifying a flower from an image that is split into a grid of pixels. 
The ability for a human to enter the rules of identifying flowers is 
extremely difficult because there is so much variety in flowers. A 
more practical way to take on this task is to start with random rules 
that each node follows, which will produce many errors. After a series 

 Input        First layer             Second layer                 Output  
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of tests where an outside source confirms if the answer is correct or 
not, the next step is to change the rules of the nodes in a direction that 
will minimize the error. This process is called back propagation and is 
a way for neural networks to “learn” and improve over time, pictured 
in Figure 10-14. After many testing phases, the neural network rules 
will become better at identifying flowers in a photo. Mathematically, 
this process uses vector calculus and follows the gradient to change 
the node rules in a direction that minimizes error.213 Neural networks 
show how an information system can develop and adapt a set of rules 
to effectively process complicated information.   

 
  

 
Figure 10-14 Neural Network Learning and Back Propagation 

 
The neural network rules created from back propagation 

can be non-intuitive, messy, and illogical, contrasting the example 
of identifying patterns in four pixels. However, the seemingly 
random rules in neural networks can generate extremely effective 
results with proper test data. Neural networks also represent a 
universal function, in that they can approximate any possible 
function, like text to text, text to image, image to text, and even be 
used to predict results of complex physics problems like some 
protein folding geometries. However, artificial neural networks 
typically rely on inputting known test data, do not often provide 
insights into the underlying dynamics, and do not analytically 
solve problems in compact forms like physics equations.   

An interesting attribute of neural networks is that two sets 
of neural networks can have completely different rules, or ways 
of deciphering reality, but end up with similar predictive power. 
Even though neural networks are much simpler than the human 
brain, applying this concept to the human neural network could 
mean that two or more completely different mental models of 
reality may lead to similar accuracies in real-world testing.  
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Example 10.9 
 

The gradient, or slope, 
is followed to change 
rules to reduce neural 
network errors. Also, 
multiple rules may  
minimize errors.  
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Perception and Memory 

 

One information process common in living systems is spatial 
perception. Animals can create perceptual models of shapes, colors, 
and trajectories in space, which are essential for locomotion, 
migration, and identifying threats or opportunities. 214  The basic 
process involves input signals from sensory organs that are processed 
in the brain to create perceptual representations, as shown in Figure 
10-15. Perception in animals has high levels of information feedback 
as organisms can influence the environment and subsequently change 
the sensory signals received. While many brain regions and processes 
related to vision have been identified, such as the visual cortex in the 
back of the head, the exact mechanism of perceptual modeling is still 
a topic of ongoing research and not completely understood.215   
 

 

 
 

Figure 10-15 Cognitive Modeling of Environment 
 

 While it may seem that perceptions of the environment should 
match reality, this is not always the case. For example, visual illusions 
show that sensory data can be grossly distorted. One common illusion 
is that a horizontal line will appear to be curved when it crosses other 
lines converging to a center point. Another visual illusion is that the 
brain will project lines onto a pattern when just the tail ends of the 
lines are provided, as shown in Figure 10-16. Visual illusions show 
that the brain can alter, take away, or add information when perceiving 
the environment. Cognitive representations often do this to save 
energy and memory usage when observing patterns. More generally, 
the brain perceives reality as what is most evolutionarily suitable, 
functional, and energy efficient, not necessarily what is true.216 

A startling property of spatial representation is the brain’s 
ability to efficiently memorize vast amounts of information, which 
is accomplished through an elegant method of neural connectivity. 
When an animal is in a particular region in space, such as a mouse 
walking over the same point in a maze, neurons called place cells 
occasionally fire. In addition, the brain also contains grid cell 

Lines appear bent 

Lines appear  

Figure 10-16        
Visual Illusions 
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neurons that fire when an animal passes regular interval points in a 
grid-like map. A connected network of grid cells can identify 
specific locations with extreme efficiency, as explained more in 
Example 10.10. For example, 1000 place cells can only represent 
103 individual locations, but 1000 grid cells can hypothetically 
represent ~1030 locations. Animals utilize both place and grid cells 
to efficiently memorize and model the spatial environment.  

An intriguing theory of how the brain efficiently models and 
memorizes objects is hierarchical temporal memory (HTM). 
Mathematically, HTM is an artificial neural network model where 
each node has thousands of connections to other neurons 
(simulating both synapse and dendrites) and learns unlabeled data in 
an unsupervised way by creating new synapses.217 Following HTM 
theory, representations are constructed through recursive hierarchies 
of rearrangeable units. For example, when the object of a car is 
thought of, it is perceived as a unit where the subcomponents or 
combinations apply to other units. For example, the unit of a car can 
be combined with a store to think about a store that sells cars. The 
unit of the store can also be associated with other units. A car also 
contains many sub-elements, like an engine, which is a unit that can 
simultaneously apply to other items that contain an engine, like a 
boat. HTM theory poses that the brain can efficiently store 
memories by flexibly arranging elements in subsets or supersets, 
compared to each item having its own identity.  

Holographic patterns may even play a role in perception and 
memory. This idea is explored in the holonomic brain theory posed 
by neuroscientist Karl Pribram and physicist David Bohm.218 They 
proposed that signals in the brain are encoded through holographic 
interference with network-based properties. This would mean that 
data is not stored in individual neurons, but in the connections 
between neurons. Long-term memory is one such example of a 
network-based storage phenomenon.219 Experiments have shown 
that removing small sections of the brain does not destroy certain 
memories, suggesting that memory in part exists across the neural 
network. This is similar to a holographic pattern, where the 
underlying pattern would not be destroyed, but only decreases in 
resolution, by removing a given piece. Another reason potentially 
driving holonomic brain processes is that a holographic encoding is 
extremely energy-efficient and resilient to errors. It is important to 
note that some brain functions are highly specific to regions of the 
brain. However, interconnected networks and holographic encoding 
may still play a critical role in certain functions like memory and 
perception.  

+ 

Example 10.10 

 

A neural grid cell fires 
as an animal crossess 
roughly hexagonal 
points on a landscape. 

 
 
 
 
 

A grid cell represents 
any junction. To find a 
unique position, 
multiple grid cells with 
different orientations 
are needed. The four 
hexagonal grids below, 
for example, only 
overlap at one point. 
 
 
 
 
 
 
 
 
 
 
 
 
    

  

    
  

    

Unique overlap 
location 
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Cognition and Consciousness 

 

While there have been many discoveries in fields such as 
neuroscience, cognitive science, psychology, and others, the exact 
nature of what distinguishes a system to be “cognitive” or “conscious” 
does not have a mutually agreed definition by the scientific 
community. It is clear that information processes are integrally related 
to many cognitive activities such as perception, memory, reasoning, 
knowledge, and a state of awareness. However, exactly what it takes 
to make an informational or biological system conscious is not well-
defined. This can lead to numerous questions, such as whether 
artificial computers can be considered conscious.   

A commonly explored question is what consciousness is 
made of. Some theories have proposed that consciousness is another 
type of substance not made of matter, such as the Cartesian mind vs. 
matter division. A central view of systems science is that matter and 
mind are interrelated and do not require a harsh division. Emergent 
properties of matter, like computation or cognition, can have vastly 
different behaviors than typical matter, but do not require a new type 
of substance and are considered parallel descriptions of the same 
reality. So, while conscious systems may have unique properties, a 
new fundamental substance should not be required to explain them.  

A longstanding goal of science is to clarify the criteria for 
physical systems to have the emergent properties of cognition and 
consciousness. One may attempt to say that cognitive systems should 
only arise in animals with sensory organs, nervous system, and brains. 
However, it is difficult to draw the exact boundary where the brain, 
and other sensory organs starts and ends. Also, this begs the question 
if animals without brains can perform cognitive activities, which 
seems plausible. A broader theory is to associate cognition with any 
living process down to cellular processes. This follows Maturana’s 
and Varela’s Santiago theory that cognition is the process of 
autopoiesis and is present in all living systems. Following this 
definition, only information systems present in living systems, such as 
DNA and neural networks, would be considered cognitive, and 
nonliving systems like computers would not have cognition. This 
means cognition is composed of the processes associated with self-
making, self-repairing, self-replication, and life. The cognitive 
information in an autopoietic system would require a self-reflexive 
and meta quality as it is the information to construct oneself, rather 
than just the information needed to function a given procedure.  

Example 10.11 

 

In modeling one 
reality, nature (e.g. 
humans) has the 
emergent ability of 
knowledge, which 
grows by acquiring 
information with 
explanatory power 
of nature itself. 
Knowledge allows 
nature to model 
itself via sciences. 
The informational 
markers of any 
type of knowledge 
(or formal system) 
emerge from 
physical laws.    
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Other theories of consciousness are not restricted to 
living systems, such as integrated information theory.220 
Integrated information relates to the number of causal 
relationships between components of a system and has been 
posed as measure of consciousness. For example, a digital 
photograph has zero integrated information, because 
changing the value of one pixel does not influence others. 
However, changing a node in an artificial neural network 
can affect how the entire system processes results and 
causally relates, which means the system has integrated 
information. Using integration information as a measure for 
consciousness aligns with studies that the number of neural 
connections (leading to more integrated information) is 
correlated to greater cognitive abilities, such as self-
awareness. In its most general form, integrated information 
extends to all forms of matter, like artificial neural networks 
or the Internet, and is not just limited to biological systems. 
However, biological systems, such as the brain, would have 
much more integrated information than typical artificial 
systems.  

 
Summary 

 

Information provides a critical tool for understanding complex 
systems like genes, brains, and computers. These information 
interactions can also be entangled, highly interconnected, and produce 
emergent properties. Computation irreducibility reinforces the ability 
for complexity to emerge with no ability to compress the data required 
to model the system. Information also plays a role in perception and 
cognition, which is particularly interesting, as these phenomena 
describe the process by which the universe creates models of itself and 
learns over time. 

Integrated information calculation 
 

• Partition a system into 
different components 
 

• For each possible state, 
analyze the causal relations 
of components 

 

• Identify integrated relations 
that can not be explained by 
one component alone  

 

• Compute the total integrated 
information of the system  

Figure 10-17  
Integrated Information 
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Chapter 11 Sustainability  
 

 

 
 

 
A highly practical application of system science is sustainability. 
Sustainable systems maintain and sustain resource reservoirs over 
many generations. Strategies to improve sustainability include 
increasing efficiency, using renewable energy, sourcing recyclable 
resources, and increasing network resilience. Beyond physical 
resources, sustainability applies to maintaining economic resources, 
like monetary capital, as well as societal resources, like healthcare and 
social wellbeing. Altogether, sustainability works to establish and 
enable the ability for social, environmental, and economic systems to 
sustain and thrive.   
 

 
S :{DReservoirs = 0 } 

 

Figure 11-1 Equation for Sustainability 
 
Sustainability has opened a new chapter in the history of 

science in the 21st century that includes the study of climate change, 
resource limitations, and global environmental impacts. These 
findings show that humanity’s technologies are interlinked with the 
planetary environment. Sustainability sciences demonstrate that 
extractive processes can have negative global impacts the need to 
design healthy relations between society and the environment to 
ensure long-term prosperity. To create solutions to complex problems, 
sustainability draws insights from natural sciences and social sciences 
as well as employs principles of systems thinking.  

Example 11.1  
Renewable Energy 

Renewable energy, 
like wind and solar, 
creates electricity 
from resources 
that continually 
replenish and 
supports social,  
economic, and 
environmental 
sustainability.  

Example 11.2  
Sustainable 
Reserves 

A sustainable  
resource reservoir 
stays constant over 
time. This means 
that the input rate 
is equal to the 
output rate.  
 
 
 
 
 
 
 
 

    Input  =  Output 

DReservoir= 0   
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Sustainable Systems 

 

Sustainable systems are designed to persist over many generations. 
For example, the use of wood resources can be sustained for many 
generations if wood is cut at a rate equal to or below the forest 
replenishment rate. Sustainable systems differ from extractive 
systems, which use resources faster than the rate of replenishment, 
thereby causing reserves to decline. For example, using wood 
resources faster than the replenishment rate is extractive and depletes 
reserves for future generations. Regenerative systems use resources 
slower than the replenishment rate and allow reserves to grow over 
time, shown in Figure 11-2. Beyond physical and environmental 
measures, sustaining and regenerating resources can also apply to 
social and economic measures.  
 
 

Regenerative: Rate of use < Replenishment Reserves decline 

Sustainable: Rate of use = Replenishment Reserves stable 

Extractive: Rate of use > Replenishment Reserve grow 

 
Figure 11-2 Sustainable Reserves 

 
Sustainable designs strive to provide benefits simultaneously 

for the user and broader world. This differs from an output design that 
works to optimize the greatest benefit to the user regardless of the 
environmental and societal impact. Output design can have the 
unintentional effect of harming the environment and society, as it is 
only optimized for the beneficiary. In contrast, sustainable designs 
work to simultaneously optimize benefits for the agent as well as the 
broader world. Benefiting the larger system ensures the ability to 
sustain the external supporting factors that enables the technology to 
function. Sustainable design acknowledges that users are not separate 
from the environment and finds optimal, systems-wide, solutions. 

 
 

 
 Output Design: (Beneficiary optimization)                Sustainable Design: (System-wide optimization)  

 

Figure 11-3 Output vs. Sustainable Design 
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Nature-Inspired Designs 
 

One strategy to develop sustainable designs is to find inspiration 
in nature itself. A prime example is that physical systems tend to 
follow the principle of least action and minimize energy use, like 
water flowing down a hill on the path of least resistance or atoms 
creating efficient crystal geometries. Using structural designs 
that follow the path of least resistance, such as catenary curves, 
minimal surfaces, and geodesic domes, can support sustainability 
by using less resources to achieve useful outcomes.  
 Living systems provide many useful insights for 
sustainable design. The field of biomimicry utilizes insights from 
biology to address complex engineering problems, such as 
locomotion, structure, and growth. Biomimicry is particularly 
relevant for sustainability because living systems have evolved 
over millions of years to utilize designs that are fully recyclable, 
resource efficient, resilient, and adaptive to change. Life as a 
whole is required to be sustainable in some form, otherwise life 
would fail to sustain over new generations and cease to exist. 

Many technologies draw inspiration from biology. For 
example, airplane wings generate lift in a way similar to bird 
wings. Water repellent coatings make use of small protruding 
bumps to condense water into droplets in a fashion similar to the 
water lily. Velcro mimics the burr fruit’s use of hooks to adhere 
to surfaces, as displayed on Figure 11-4. Even unintuitive 
patterns in nature can prove to be beneficial. For example, the 
small protruding bumps on whale fins would seem to increase 
drag, but actually increase efficiency for long distance swims. 
Similar bumps can be used to improve wind turbine 
performance.221  
 
 

        
           Plane flight                  Water repellent                       Velcro and 
             and bird                   materials and lilies                   plant hooks  

 

Figure 11-4 Biomimicry Design Examples  

Example 11.3  
Learning from Termites 

Termite nests provides 
natural ventilation by 
the surrounding air 
pressure and orientation 
to the sun. A similar 
technique was used in 
the East Gate building in 
Zimbabwe for energy 
efficient ventilation. 
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Ecosystems are able to sustain life for many generations 

without running out of energy or materials, providing insights for 
sustainable design principles. For example, many plants use 
renewable energy resources, like the Sun, to sustain over generations 
versus short-lived energy resources. Likewise, the use of renewable 
energy is a core principle of sustainable design. Ecosystems also exist 
in a fully recyclable biosphere, or else materials would run out over 
time. This is analogous to the sustainability goal of using recyclable 
materials. Additionally, ecosystems tend to organize into resilient 
networks, to deal with volatility in the environment, as well as evolve 
over time to better suit the environment. Resilient networks and 
adaptive evolution are also useful designs to cope with changes in in 
resource exchange networks (e.g. power, water, transportation, 
economic systems). A summary of these ecologically-inspired 
sustainability design principles is given in Figure 11-5. 

 
 

 
 

Figure 11-5 Sustainability & Ecosystems Design Principles  
 

Biophilic design is another nature-inspired 
tactic that incorporates natural elements in 
architecture. The biophilia hypothesis, posed by 
Edward Wilson in 1984, posits that people possess 
an innate tendency to seek connection with nature 
and life. Biophilic design supports the human 
connection to life by incorporating plants, natural 
light, airflow, water, Earth-friendly materials, and 
biomorphic forms into architecture. Studies show 
that there are positive cognitive, health, and 
economic benefits for people residing in buildings 
utilizing natural elements.222 For example, hospital 
patients with plants in their rooms have shown 
better recovery rates. 223  Figure 11-6 shows a 
biophilic design where a sky-scraper has trees on all 
the balconies, integrating nature with living spaces. 

 
 

Resource 
Efficiency

Renewable 
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Adaptive 
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Figure 11-6 Biophilic Design  
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Resource Efficiency 
 

Efficiency supports sustainable design by minimizing the resources 
and energy required to achieve desired outcomes. Efficiency is 
defined as the ratio of useful work to total energy used. Efficiency 
is increased by gaining more useful work or decreasing the wasted 
energy. An example of energy efficiency would be to use less 
energy to achieve the same amount of heating outputs to the user, as 
displayed in Figure 11-7. This could be achieved by better 
insulation, closing air gaps, or installing windows that retain more 
heat. Sustainable design strategies leverage energy efficiency as 
well as material efficiency in producing goods and services.   
 
 

 
 

Figure 11-7 Improving Efficiency  
 
Currently, the world is in an energy efficiency revolution. 

For the first time in modern history, developed economies are 
reducing total energy use. This is largely due to efficient lighting, 
heating, and transportation systems. The decrease in energy use has 
also occurred during an increase in economic growth. From 2007 to 
2022, the total energy use of the OCED countries decreased by 
7.7%, while the total value of produced goods and services (GDP) 
increased by 82%.224 More energy is not always required to increase 
financial outcomes and it is possible to do more with less. As 
expounded upon by U.S. President Obama, prioritizing energy 
efficiency can support long-term economic value generation.225 
Applying energy efficiency at global scales is critical to reduce 
extraction, sustain reservoirs, and gain value.  

An important efficiency consideration is that avoiding the 
need to use energy in the first place is the most sustainable energy 
strategy. For example, driving the most energy-efficient car still uses 
more energy than not driving any car. Having efficient devices 
should not be used as an excuse to use technologies that are not 
required in the first place. Additionally, the kinds of energy inputs 
that are used are critically important. Sustainable designs prioritize 
pairing efficiency with renewable resources. 

 

  More heat Input  
energy 

Less wasted energy 

Better 
insulation  
increases  
efficiency 

Example 11.4  
Efficient Paths 

The traveling 
salesperson problem 
asks what is the 
shortest possible path 
to visit each city once 
and return to the 
origin, such as in the 
graph below.   
 
 
 
 
 
 
 
 

The problem is easy 
to solve for a low 
number of cities, but 
there is no quick way 
to solve for many 
cities. Efficiently 
managing resources, 
supply chains, and 
other economic 
systems can lead to 
complex problems. 
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Renewable Energy 

 

The use of renewable energy is a critical dimension of sustainable 
systems. Society uses a broad array of technologies for renewable 
energy sources, like solar, wind, and hydroelectric, as well as non-
renewable sources, like fossil fuels and nuclear energy. The 
continuous power provided by renewable energy sources can be 
measured in terawatts TW (one trillion watts). Non-renewable 
energy, like coal, oil, gas, and uranium have finite reservoirs, very 
low replenishment rates, and are measured in terawatt-years TWy, 
the energy that can be continuously provided for one year.  
 Global estimated of renewable and non-renewable energy 
resources are summarized in Figure 11-8. Renewable energy 
resources are much larger than fossil fuel reserves and can power 
the world many times over. For example, solar energy provides 
23,000 TW continuously year over year, while the entire world’s 
fossil fuels and uranium can only provide 1,570 TW for one year. 
With the 2021 global energy use at ~20 TW, finite energy sources 
could only fully power the world for ~80 years at current rates. 

 
 

  
 
 

 
Figure 11-8 Global Renewable and Finite Energy Sources 

 
The 21st century marks a pivotal transition where renewable 

energy sources, like wind and solar, are more cost effective than fossil 
fuels—the dominant source of energy since the industrial revolution, 
which is finite and severely impacting the climate. Utility-scale solar 
and wind power plants have been the lowest cost of new energy as far 
back as 2015, and renewable prices continue to fall.226 Improvements 
in batteries are also supporting the ability to power electric vehicles 
and the electric grid. Going into the 21st century, it is now feasible to 
power the world with 100% renewable energy. Enacting this change 
is necessary to power humanity for many generations.  

Global 
renewable 
energy: TW  

Global finite 
energy: TWy 
(TW for 1 year)  

Solar: 
23,0000 TW 

Hydro: 
3-4 TW 

Biomass: 
2-6 TW 

Uranium: 
185 TWy 

Coal: 
830 TWy 

Tides + Ocean: 
3-13 TW 

Geothermal: 
0.3-2 TW 

Oil:  
335 TWy 

Gas:  
220 TWy 

Replacement rate for 
fossil fuel resources 
is very slow 

Wind:  
75-130 TW 

Example 11.5  
Renewable Goals 

Over 50 countries 
have committed to 
100% renewable 
energy by 2050, 
including Denmark, 
Sweden, Costa Rica, 
Morocco, and Sri 
Lanka. Some states in 
the U.S. also have this 
goal, like Maine, 
California, Hawaii, 
and Nevada. 
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Regenerative Food 
 

Regenerative agricultural methods are a critical dimension of 
sustainability. Conventional use of monocrops, synthetic fertilizers, 
and pesticides have been shown to be able to produce increased short-
term results, but they can lead to long-term negative effects, like soil 
erosion. Huge desertification events like the 1930s Dust Bowl in the 
U.S. were exacerbated by extractive agriculture methods. 227   In 
contrast, regenerative agriculture techniques, like no-till farming, 
planting polycultures, and natural fertilizers can improve soil and 
reduce long-term value.228 Regenerative land management supports 
increasing the capture of carbon dioxide through plants and compost, 
which reduces climate change impacts. Regenerative agriculture 
works for long-term and system-wide benefits for water, carbon, soil, 
and ecological resilience, with benefits summarized in Figure 11-9.  

 

 
  

 
 

              Conventional Agriculture                    Regenerative Agriculture 
 

Figure 11-9 Sustainable Agricultural Management 
 

There are many ways to increase the responsibility and 
sustainability of food systems. Across the world, and especially in 
industrialized countries, the consumption of high amounts of meat has 
immense environmental impacts. Reducing or eliminating 
consumption of unsustainable meat is one of the most impactful ways 
to reduce environmental impacts. Specific food products can be linked 
with outsized negative environmental impacts, such as palm oil 
linkage to deforestation. Shopping locally and regionally is an 
important piece of supporting sustainable food systems and presents a 
number of benefits such as lower transportation distances.   

Food systems are deeply related to personal health and public 
wellness. For example, eating processed sugar is correlated with 
negative health outcomes, like obesity and diabetes.229 Food can also 
support healthy outcomes, such as turmeric with black pepper, which 
can support reducing inflammation symptoms.230 Designing healthy 
food systems is critical to maintaining social wellbeing.   
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Sustainable Structures 

 

Buildings use a large quantity of resources and utilizing designs that 
can efficiently provide heating, electricity, water, and other essential 
functions is an avenue to support sustainability. Sustainable 
buildings not only save energy and benefit the environment but can 
also save money and support positive social outcomes. Sustainable 
design can be applied to all types of buildings, from residential 
houses to commercial factories to entire cities. 

Sustainable structures utilize many techniques to minimize 
inputs, like using solar energy, collecting water, and growing food. 
This reduces the need to provide external resource inputs. For 
example, buildings can save energy by being oriented in a fashion 
to allow passive solar light to heat the building floors during winter 
and stay in the shade in summer. Rooftop solar panels can be used 
to generate renewable energy and reduce electricity costs. Rainwater 
collection and secondary reuse of water are other important 
strategies to enable water efficiency for the household and other 
uses, like gardening. Onsite composting is another tool that can be 
used to recycle food waste and generate soil for local gardens. Some 
of these features of sustainable buildings are summarized in Figure 
11-10. As a total system, sustainable structures provide shelter, heat, 
electricity, water, and food with minimal to zero resources beyond 
the structure and surrounding environment.   

 

 
 

Figure 11-10 Sustainable Building Features 
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Example 11.6  
Earthships 

Earthships are highly 
sustainble buildings 
that follow the six 
principles of: 
 

1) passive solar 
heating and cooling  
 

2) solar & wind 
electricity   
 

3) natural and 
recycled materials  
 

4) water harvesting 
 

5) food production  
 

6) water treatment   
 
 

Natural  
building 
materials 
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Recyclable Materials  
 

Recycling transforms used products into new products, reducing the 
need to extract resources. Currently, most manufactured products have 
low rates of recycling and end their lifecyle in the landfill, which 
creates a linear flow from extraction to waste. In contrast, a circular 
economy prioritizes high rates of recycling, thereby lowering the need 
to extract new resources or discard resources for no further use. Many 
methods can be used to increase circularity, like reducing, reusing, and 
repairing products.231 In a fully circular economy, all resources are 
recycled and reused.  
 
 

 
                Linear Economy                             Circular Economy 

 

Figure 11-11 Linear vs. Circular Economy 
 
A fully zero waste economy takes strategic planning. From 

the start, products need to be designed to be completely recyclable at 
the end of use. Creating biodegradable goods is one such method. 
Establishing municipal waste systems with enough capacity to process 
materials is another necessary component to achieve zero waste. 
Many stakeholders, from industry to government to nonprofits, need 
to work together to create a fully circular economy. While achieving 
net zero waste may sound like a lofty goal, it is a requirement for long-
term sustainability (landfills cannot be filled forever) and natural 
ecosystems are already fully recyclable and reuse all resources. If 
ecosystems can be zero waste, so can humanity.  

Recent technological advances are creating entirely novel 
methods to recycle and manufacture materials. For example, the 
ProtoCycler is a 3-D printer that can grind down existing plastic items 
to be melted and printed into new forms.232 In the future, it might be 
common to print products through fully recycled materials that are 
sourced locally, minimizing resource use and transportation. Other 
new technologies, like plant-based polymers and reusable packages, 
are making a circular economy a reality for many goods.   
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Resilient Networks 

  

Sustainable systems often require optimizing how components in 
a network synergistically interact. For example, urban planning 
needs to optimize multiple interconnected networks, like 
transportation, energy, and water. Sustainable urban design 
works to increase efficiencies and promote the resilience to 
unexpected changes. Many types of planners need to work 
together to optimize networks, like transportation routes, energy 
grids, and water distribution, to support full-scale sustainability. 

Electric grids can benefit from resilient network design. 
Traditional electric systems were designed as centralized top-
down networks where large power plants sent electricity to 
consumers. Modern smart grids now enable two-way flows of 
energy in a decentralized network. Smart grids optimize power 
plants, residential solar, batteries, electric cars, and other energy 
resources in a collective network, as shown in Figure 11-12. 
Decentralized grids can promote local renewable energy 
integration and are more resilient to unexpected disturbances.233   

 
 

 
 

 

Figure 11-12 Smart Grid Networks 
 

Optimizing networks for sustainable outcomes often 
involves balancing efficiency and resilience. For example, one 
large highway might be the most efficient route between two 
cities when operating at full capacity, but a network of smaller 
roads can be more resilient to unexpected closures. Biomimicry 
can offer insights to find ways to optimize networks across 
multiple factors. Models of ant transportation routes, which are 
both efficient and robust against disruptions, can help design 
better human-scale transportation networks between hubs of 
activity.234 Slime mold has even been shown to grow networks 
similar to the efficient Tokyo subway system when pieces of 
food are places to mimic the position of city destinations.235   
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Example 11.7  
Network Design 

In centralized networks 
all nodes are connected 
to a hub, increasing 
efficiency. A distributed 
network has no hubs, 
increasing resiliency.  
Decentralized networks 
have multiple hubs, that 
strike a middle ground of 
efficiency and resilience. 
Utilizing the appropriate 
network design is critical 
for sustainable design.   
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Economic Sustainability 
 

Supporting just and resilient economic systems is a pillar of 
sustainability. The economy is a system of interrelated production 
and consumption transactions influencing how goods, services, and 
resources are allocated. Economics studies how measures like 
supply, demand, and price relate to one another. Sustainable 
economic systems work to conserve and improve financial, social, 
and environmental resources over the long-term.  
 One dimension of economic systems is the degree of choice 
individuals have in making decisions. In a purely free market, there 
are no collective rules dictating individual transactions, while 
planned economies establish centralized rules that apply to many 
people. One pitfall of no regulations is the “tragedy of the commons”, 
where individuals extract resources for personal value, but at the 
expense of diminishing the collectively shared value.236 On the other 
hand, too much government regulation can reduce the ability for local 
groups to innovate solutions. Most economies in the world today 
exist as some combination of the two. Network models of economic 
systems can provide a toolset for policy makers to make the best 
decisions that optimize for both individual and group decisions.237   

Some ideas associated with capitalism, like infinite growth 
by depleting environmental resources, need to be transformed to 
align with sustainability. It is impossible for extractive industries to 
grow forever on a planet with finite resources. Long-term sustainable 
economic value must be driven by the efficient use of resources, 
renewable energy, and recyclable materials. Low-cost energy 
efficiency and renewable technologies are already increasing value 
while reducing resource extraction.  

Another capitalistic concept not aligned with sustainability is 
that a company’s sole mission is to create profit for shareholders. 
While often believed to be true, U.S. corporate law does not dictate 
that companies must maximize profits or share price. 238  To the 
contrary, company leaders are permitted to make decisions that are 
in the best interest of many other stakeholders, such as employees, 
customers, and society. Companies often reduce short-term profit 
gains for shareholders with no legal repercussions, such as increasing 
pay to employees, conducting more research and development, or 
donating to non-profits. A company’s purpose is to provide long-
term value to many stakeholders, not just generate quick profits for 
shareholders. Debunking the shareholder value myth is an essential 
ideological change to support a sustainable, systems view, of 
economics that integrates social and ecological factors in decisions.  

Example 11.8  
Economic Systems 

The economy is a 
system of consumers 
and producers that 
transact with 
financial payments 
and goods. The 
economy works 
within society and 
the environment.  
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 Another aspect of sustainable economics is expanding the 

scope of capital. Capital is often thought of as just financial assets, but 
other forms of capital exist. Social capital and natural capital may not 
have direct financial equivalences but are nonetheless valuable. Social 
capital, for example, can include intellectual expertise that may not be 
on a balance sheet, but is essential for generating value. An example 
of natural capital is services provided to society by ecosystems. For 
example, wetlands can provide economic value by cleaning water, 
which would cost money to accomplish in a water treatment plant if 
the ecosystem were destroyed. Sustainable economics works to 
optimize all types of financial, social, and natural capital, some of 
which are listed in Figure 11-13.  

Sustainable economics considers forms of social capital that 
may be entirely omitted in traditional economics. Approximately 60% 
of the global working population is part of the informal economy that 
exchanges goods and services not monitored by governments.239 For 
example, many people in developing countries provide food, water, 
and energy for their households with no formal capital exchange. 
While capitalistic endeavors may raise monetary accounts on paper, 
these actions may actually diminish the standard of living. Sustainable 
economics takes a system-wide approach to make decisions that 
provide benefits across financial, social, and natural forms of capital.  

Traditional economic metrics like Gross Domestic Product 
(GDP) should be used with caution when assessing sustainable 
outcomes. GDP measures the total amount of money spent on goods 
and services in a country over a specific time frame, with no 
consideration of whether the goods and services were used for positive 
or negative outcomes. For example, spending money on unnecessary 
military equipment or to clean up an oil spill will raise GDP. Also, 
GDP can grow by increasing profits for the wealthy, while the 
majority of a population makes less money. Many organizations are 
aligned that GDP should not be considered an effective indicator to 
measure a country’s standard of living or assess economic well-
being.240 Other metrics such as wealth distribution, income after living 
expenses, and public health indicators are more relevant to assess 
sustainability progress and societal wellbeing. Replacing, or 
augmenting, GDP to include other social and environmental factors is 
important to assess sustainable economic outcomes.  

Another misleading metric for sustainable economics is net 
present value. Net present value compares future earnings to present 
earnings using a growth or discount rate. For example, if money is 
expected to grow at a 10% rate, then $100 today should be worth $110 
dollars in one year. Following this 10% growth rate, receiving $100 

 
 

Financial  
Capital 

 

- Cash 
- Property 
- Investments 
- Debt and loans 
 

Social  
Capital 

 

- Employee skills 
- Social organizing 
- Intellectual skills 
- Community support 
 

Natural  
Capital 

 

- Ecosystem services 
- Eco-tourism 
- Ecological products 
- Resource production 

Figure 11-13 Multiple 
Types of Capital 
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now would be better that receiving $105 in one year, because the $100 
is expected to grow to $110. However, receiving $120 one year from 
now would net someone more value than $100 today because, 
following the same 10% discount rate, $120 in one year would equal 
$109 of net present value, calculated as $120 / (100% + 10%) = $109. 

A net present value analysis can be helpful for simple, short-
term, tradeoffs, but there can be unsustainable repercussions from this 
type of analysis. For example, consider a forest that could either 
produce $100 of sustainable wood products per year, or could be cut 
down and sold for $2,000. Following a discount rate of 10%, the net 
present value of all future years is $1100 ($100 + $92 + $84 +…) and 
lower than $2000. While cutting down all the trees may seem like the 
better option using net present value, the model neglects the fact that 
after 20 years the forest will provide more that $2,000 and continue to 
do so every year after as a sustainable asset. Discounting the future 
through net present value can lead to the prioritization of short-term 
gains over long-term sustainable outcomes.  

To more accurately measure sustainable economic outcomes, 
a whole host of new company disclosures have been introduced in the 
21st century. Many of the largest U.S. companies now disclose 
sustainability reports detailing social, environmental, and economic 
outcomes. These disclosures can include carbon emissions, 
environmental mitigation, worker safety, community engagement, 
and other metrics outlined in Figure 11-14. Some companies even 
publish integrated annual reports that include financial and 
sustainability metrics side-by-side. Regulators and advocates are 
working to improve the standardization and comparability of these 
system-wide measures. 

The 21st century marks a revolutionary shift, where investors 
are now taking sustainable economics seriously. As of 2022, 13% of 
the professionally managed assets in the U.S. include sustainable 
measures in their investment approach.241 New investment funds have 
been created that are dedicated to optimizing environmental, social, 
and governance (ESG) outcomes. Many of these funds even correlate 
with increased financial returns. For example, from December 2013 
to December 2023, the 500 largest U.S. companies grew 165% while 
the 500 largest U.S. companies that exclude fossil fuel companies 
grew 178%. 242  This result, among others, shows that ESG 
optimization can support long-term financial return. This evidence 
counters traditional portfolio theory that says more diversification is 
always better. It may be the case that sustainability leaders outperform 
the market over the long-term. 

Environmental 
 

 

- Carbon emissions 
- Resource efficiency  
- Efficient water usage 
- Supplier standards 
 

Social 
 

 

- Worker safety 
- Health coverage 
- Fair trade  
- User satisfaction 
 

Governance 
 

 

- Meeting regulations 
- Lobbying expenses 
- CEO-to-worker pay 
- Worker pay metrics 

Figure 11-14 
Sustainability Metrics 
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  Social Sustainability 

 

Social wellbeing is a pillar of sustainability alongside the 
economy and environment. Social sustainability enables current 
and future generations to create healthy and livable 
communities. Supporting equitable, diverse, and connected 
societies is essential for social sustainability, well-being, and 
resilience. Additionally, social sustainability entails improving 
a host of public health outcomes, such as reducing infant 
mortality and exposure to curable illnesses.  

While an important topic in its own right, social 
wellbeing is deeply linked to the management of ecological and 
economic resources. Access to food, water, resources, and 
energy, allows society to thrive. Economic measures, like 
wealth distribution, minimum wage, and cost of living, are 
integrally related to social wellbeing. Social wellbeing is 
interlinked with ecological and economic resources and must be 
managed as a connected system.  

Diversity plays an important role in social resilience, 
adaptation, and innovation. The benefits of diversity can be 
illustrated in an example from agriculture. Farms with 
monocrops and fewer types of plants have a much harder time 
surviving disruptive changes compared to a diverse collection 
of crops. Similarly, creating monocultures of ethnicity, religion, 
and culture hinders a society’s ability to innovate and consider 
different views. Studies also show that more culturally diverse 
social communities are able to better connect and form bridges 
with other communities.243 Building social bridges is essential 
to create resilient networks that are able to pool resources and 
share ideas beyond the immediate group. 

Cherishing diversity is essential to supporting social 
sustainability and creating strong social networks. This is 
extremely important as there has been a history of social, 
political, and economic oppression to exploit diverse cultures 
with negative outcomes for social wellbeing and quality of life. 
Social sustainability works to find ways for diverse groups of 
people to collectively work together and support one another to 
become more resilient. A systems perspective acknowledges 
that all humans are on Earth together and that our actions are 
interrelated. As global citizens, mental frameworks need to 
transition to appreciate diversity and unique perspectives.  

 

Example 11.9  
Small World Networks 

Social networks are often 
small world networks, 
where distant strangers 
are linked by a short 
chain. For example, most 
people on Earth only have 
six degrees of separation. 
Small world networks 
cluster in cliques, or 
groups, with some key 
connection bridges. The 
average length between 
nodes in a small world 
network follows a scale-
free logarithmic ratio.  
 

 
 
 
 
 
 

 

Length ∝ Log(Nodes) 
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Another way to promote resilience in an organization 
is to increase autonomy of subgroups by transitioning away 
from a purely top-down, need-to-know hierarchy. For 
example, instead of one leader that makes all decisions, it is 
possible to create local groups that collaborate to reach 
decisions within a larger collective. In this model, the role of 
leaders is less about dictating rules and instead facilitating 
communication, coordination, and innovation. The snowflake 
organization is one such model relevant for businesses and 
advocacy groups of how many smaller groups can work 
together to reach a collective goal. U.S. President Barack 
Obama’s presidential campaign utilized this snowflake 
model; instead of all ideas being presented in a top-down 
fashion, ideas were generated at all levels of the 
organization.244 This model can help combine the benefits of 
both decentralized creativity and centralized efficiency.   

Political systems can greatly influence society’s ability to 
sustain over time or change to meet new conditions. Civic rights such 
as education, free speech, gender equality, and fair legal processes 
play an important role in supporting healthy and resilient 
communities. Government regulations span beyond social issues and 
can influence the management of ecological resources. Governments 
can establish environmental policies, like carbon emission reduction 
goals, wildlife protections, renewable energy targets, and clean water 
standards, to support sustainable outcomes. Sustainable political 
institutions promote social and economic justice as well as the 
responsible management and use of ecological resources.  

Another critical component of social sustainability is reducing 
and ending violence and warfare. Firstly, military conflict has 
immense negative societal impacts and has caused harm to millions of 
humans throughout history. Furthermore, warfare is extremely 
resource-intensive in terms of ecological and economic measures and 
does not contribute to sustainable systems. Wars are often used as 
tools to enforce unsustainable behaviors, like negative social 
hierarchies, taking of resources at the expense of others, or limiting of 
freedom of thought. Living organisms are not meant to destroy life on 
a global and country-wide scale. In ecosystems, different groups of 
animals may compete with one another, but no animal commit acts of 
war at the scale of humans. Life’s evolutionary goal is to support life, 
not destroy it. Human competition should take the form of innovating 
ideas for wellbeing and not in warfare and violence to control others.  

 

Figure 11-15 
Snowflake Model 
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Global-to-Personal Awareness 

 

Countries need to work together and set comprehensive priorities and 
actions to achieve sustainability on a global scale. One such example 
of progress toward global sustainability awareness and coordinated 
action is the United Nations' Sustainable Development Goals. These 
goals set ambitious targets for countries, companies, and non-profits 
to sustain resources and promote social wellbeing. The sustainable 
development goals include no poverty, zero hunger, gender equality, 
clean water, quality education, climate action, and other actions listed 
on Figure 11-16.245 These goals span environmental, economic, and 
social issues and emphasize the necessity to take a cross-sectional, 
systems-based, approach to create sustainable solutions. Beyond these 
goals, other targets and accountability frameworks should be created 
to shift exploitative processes to regenerative alternatives at a global 
scale.   
 

 
 

Figure 11-16 U.N. Sustainable Development Goals 
  
 Sustainability presents a new paradigm that departs from 
extractive industrialism and focuses on designing for longevity. Some 
thinkers have marked the sustainability movement as a revolutionary 
turning point in humanity that encompasses a new worldview and era 
of technology. For example, Joanna Macy uses the term “The Great 
Turning” to represent the global transition following the Industrial 
Revolution, marked by eco-friendly technology and global 
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sustainability awareness.246 This Great Turning is characterized by 
life-sustaining systems and practices, like the widespread use of 
renewable energy and recyclable materials, as well as a shift in 
thinking, values, and a raised awareness of social and environmental 
responsibility.  

The process of working to fix large-scale problems should 
always be balanced with ensuring personal sustainability. It is 
essential to take care of oneself before prioritizing large-scale 
solutions. All too often, professionals who focus on sustainability 
exhibit an unsustainable work-life balance which reduces the quality 
of their work. People are part of nature, so supporting natural 
sustainability also means supporting the sustainability of individuals 
and groups of people. It is important to live by example when 
approaching sustainability by creating rejuvenating and regenerative 
personal habits when working on global solutions.  

 
Summary  

 

Altogether, sustainability articulates a new dimension of science and 
systems thinking. Disciplines like climate change, renewable energy, 
and sustainable design require understanding the world in terms of 
complex and interconnected systems. Sustainability demonstrates that 
human social and economic activities are highly intertwined with 
global environmental resources. Sustainability uses a systems theory 
approach by working across disciplines and optimizing the 
relationships between physical, biological, and information networks. 
Understanding systems science is a critical tool to analyze the 
convoluted problems facing the world to design efficient and resilient 
solutions that will serve humanity for many future generations to 
come.   
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Chapter 12 Transformation 
 

 
 

 
Systems science provides insights to understand transformation, the 
process by which a system is open to change under the transformation 
SPresent → SFuture. Physical systems can be transformed by changing the 
underlying elements and relational rules of interaction via energetic 
and informational processes. Abstract systems can also be 
transformed through creating new models of the world. For example, 
scientific frameworks are under continual transformation to account 
for new evidence. Revolutionary scientific model shifts in the 20th and 
21st century surround the inclusion of chaotic and complex systems.  
 
 

SPresent → SFuture 

Figure 12-1 Equation for Transformation 
 
Understanding how systems can be transformed is critical to 

enact effective solutions in our modern world. For example, the field 
of systems engineering studies how many components work together 
to create synergistic outputs. Another method to improve the process 
of transformation is a systems-based analysis, which studies the agents 
and relationships involved in a system to determine the most strategic 
methods to intervene. Systems analysis can be useful to break apart 
convoluted political or social problems and create custom-tailored 
solutions. This approach, when applied to the broader world, can help 
identify the most strategic ways to enact systemic change.  

Example 12.1 
Implementing 
Change 

Agents can change 
systems in nature 
and implement 
different physical 
technologies and 
abstract models.  
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Transforming Systems 

 

Systems can be transformed by adding, removing, or changing the 
elements and relations between elements. In the system of a fish tank, 
for example, changing the quantity of light or food inputs can result in 
a transformation of the fish population or algae growth. Another way 
to transform a system would be to add new elements or agents, such 
as adding a new fish species, which can lead to vastly different results 
over time. The general process of transformation occurs when a 
system’s elements and relations are exposed to change, as shown in 
Figure 12-2. In physical systems, transformations are typically 
accomplished by altering matter, energy, or information.  
 

 
 

Figure 12-2 Transforming a System 
 
A systems change approach strategically shifts components of 

complex systems for large impacts. A systems-based view considers 
nonlinear and interrelated networks instead of focusing on how one 
input can linearly change one output. For example, consider the 
problem of a crowded freeway. One solution could be to build another 
freeway. However, this might add to other problems like congestion 
and air pollution. It may be better to create public transportation 
options to walkable city centers to reduce the need for car traffic 
altogether and make the existing freeway more effective. Many 
complex problems facing the 21st century world require a systems 
change perspective that considers interconnections, root problems, 
leverage points, and other strategies shown in Figure 12-3.  

 
 

• Understanding interconnections within and between systems  

• Seeing patterns of change over time rather than static snapshots 

• Fixing root problems and avoiding unforeseen consequences  

• Determining leverage points and change agents for action  

• Constantly learning, adapting, and probing assumptions 
 

Figure 12-3 Systems Change Strategies  

Present 
System: 
SPresent

Transformation Future 
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Systems Engineering 
 

Engineering utilizes scientific principles to design new machines, 
technologies, and physical systems to perform useful work in the 
world. These technologies are able to create emergent behaviors, 
such as locomotion, illumination, computation, and other useful 
outputs. Many engineering problems, like levers, are fairly simple 
and only require adding a few components together in a linear 
fashion. However, engineering problems with many pieces can be 
highly complex, nonlinear, and require a systems view.   
 Systems engineering manages how many components work 
together in a system to accomplish a goal. Systems engineering can 
include structural, mechanical, electrical, software, and other levels 
that enable coordinated action. The International Space Station is an 
example of a complex project that requires systems engineering.247 
This is because there are many kinds of co-existing systems to 
produce air, water, and light for a habitable environment.  

Block diagrams can be used to model engineering systems. A 
functional block diagram represents a system’s functions, or 
transformational processes, as blocks. The inputs and outputs of the 
functions are represented by arrow lines. A functional block diagram 
models how a sequence of interwoven steps work together in a 
connected system. For example, Figure 12-4 is a functional block 
diagram for an off-grid sustainable house. This system has input of 
rainwater and sunlight that is processed into usable resources of heat, 
electricity, water, and food for the building occupants. These kinds of 
graphs, and other diagrams, can be translated to rigorous mathematical 
functions through category theoretic objects and morphisms.  

 

  
 

Figure 12-4 Off-Grid House Functional Block Diagram 
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Example 12.2  
Circuit Diagrams 

Electrical circuit 
diagrams are graphs 
used to predict 
electrical behavior. 
A diagram of a 
battery, light, and 
switch is below. 
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 Data flow diagrams provide a tool to model the information 
flows and networks in a data system. In data flow diagrams, databases 
are represented by two lines and the input or output data sources are 
squares. The data flows are represented by arrows, and the functions, 
or processes, are circles. In an online business for example, the online 
shop is the interface that transforms customer inputs into a list of 
orders from a product list. After an ordered is entered, the database of 
orders then goes into a fulfillment process, which creates a list of 
fulfillments carried out by shippers, as shown in Figure 12-5. Data 
diagrams are useful to build efficient and optimal processes. 
 
 

 
 

 
 
 

 
 

 
Figure 12-5 Data Flow Diagram  

Another way to express engineering functions is an N2 chart. 
An N2 chart is a square matrix where the diagonal cells such as (1, 1), 
(2, 2) or (3, 3) represent different functions. The other cells describe 
how these various functions relate to one another. For example, cell 
(1, 2) represents how Function 1 relates to Function 2 (F1 à F2). 
These charts can model how all functions relate to one another and 
provide insights into feedback loops and overall throughput. For 
example, the functions and feedback processes required for 
successful aircraft flight, like data sensors, propulsion engineers, and 
air pressure regulators, can be modeled in an N2 chart, as each 
function relates to other functions in unique ways with various forms 
of feedback.  

 
 

Function 1 F2 à F1 F3 à F1 F4 à F1 
F1 à F2 Function 2 F3 à F2 F4 à F2 
F1 à F3 F2 à F3 Function 3 F4 à F3 
F1 à F4 F2 à F4 F3à F4 Function 4 

 

 Figure 12-6 N2 Chart of Multiple Functions 
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Example 12.3 
Sensitivity Analysis 

The robustness of a 
system can be 
tested by the total 
effect of changing 
one variable at a 
time. Variables with 
greater influence to 
the total have more 
sensitivity. This 
analysis can inform 
resilient designs.   
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Systems Design 
  

There are various stages of implementing designs from a systems-
based perspective that can achieve effective transformations in the 
world. This process can be summarized in progressive steps, such as: 
define the task, conceptualize solutions, design prototypes, and 
implement the final product. An important consideration when 
defining the problem and conceptualizing solutions is to take the 
necessary steps to ensure a solution is addressing a need. Some 
products are designed without regard to addressing human problems 
or without regard to a full range of human interactions, like the ease 
of use, relevance, and other practical factors.  

Human-centered design uses customer interactions early on to 
inform the best way to implement solutions. This shift is important to 
create relevant and effective solutions. This process first begins with 
interviewing and shadowing users to understand the context and 
identify relevant problems. After considering user feedback to define 
challenges and opportunities, different ideas are then prototyped and 
shared for follow up tests and feedback to create the final product. The 
human-centered design process is summarized in Figure 12-7.248  

 
 

 
 

Figure 12-7 Human-centered Design Process 
 
Human-centered design takes a systems approach by 

considering the surrounding context when proposing solutions rather 
than designing in isolation. This process can be useful for creating 
solutions that effectively address complex issues that interact with 
multiple stakeholders, like political regulations or economic policies. 
There is a higher chance for acceptance and usage when the concerns 
of the involved stakeholders are considered early on and addressed in 
the design with continual feedback.   
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Organization 
throughput 

Organization Models  
 

An organization is a system of people and processes to enact change 
and accomplish social, economic, and other goals. An organization 
has a throughput, which represents inputs to outputs and changes on 
the environment. Organizations often contain sub-groups to carry out 
specific functions. For example, companies typically have a leader, 
like the Chief Executive Officer, who manages heads of various 
departments, like Operations, Finance, or Marketing, who then 
manages other members. These positions can be represented in an 
organizational chart, such as the example in Figure 12-8. 
Organizations often coordinate a multitude of engineering and 
informational technologies to create desired impacts. Organizations 
typically adapt over time to meet new conditions and change their 
underlying relations and roles, written DSOrg ¹ 0.  
 

 

 

 
 

Figure 12-8 Organization Charts 
 
Systems theory works to understand organizational models 

and find ways to improve outcomes. In hierarchical, or pyramid, 
organizations, leaders manage everyone reporting to them. A pyramid 
structure can be efficient, but it lacks innovation by all members and 
resilience when managers are not present. Another type of 
organizational structure is a committee where groups decide by 
voting, like the 193 countries in the United Nations.249 One benefit of 
committees is the ability to crowd-source ideas and increase resilience, 
but a drawback is a lack of centralized efficiency. Another 
organization type is a matrix structure, where each person can have 
multiple managers for different topics, depending on the task at hand. 
A variety of models can be used, as well as hybrids of these models, 
to create organizations that can effectively address goals.  
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An enterprise architectural model categorizes an organization 
based on different views. For example, the framework utilized by the 
U.S. Department of Treasury defines four views: functional, 
information, organization, and infrastructural.250 The functional view 
refers to the overall throughput processes associated with an 
organization. The information view pertains to the necessary 
information to carry out functions. The organization view comprises 
the roles and relations to carry out functions. Finally, the infrastructure 
is the on-the-ground tools for implementation. These various views 
are considered from different perspectives, like planners, owners, or 
builders, that create work products and enable the organization to run. 
Some examples of work products by view and perspective is given in 
Figure 12-9.  
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Figure 12-9 Enterprise Architecture Framework 
 

 Understanding organizations through the lens of 
complex adaptive systems, which are systems that can learn and 
adapt over time, can inform effective management strategies. 
While a classical view of management sees organizations as 
machines that have a single solution to maximize efficiency, a 
adaptive view sees organizations as complex, evolving entities, 
like organisms. This means that there is not necessarily one 
optimal fixed way to accomplish goals, and the goals 
themselves may change. Instead of a machine with static rules, 
a systems view considers organizations as complex adaptive 
entities that can change rules for turning inputs to outputs, as 
depicted in Figure 12-10. Using complexity and adaptive based 
management strategies can create resilient and innovative teams 
that outperform strictly fixed hierarchies.251  
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Figure 12-10 Complex 
Adaptive System 
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Systems Analysis  

 

Systems analysis models relationships in complex systems, like 
business and politics, to identify optimal solutions and leverage points. 
Performing a systems analysis provides the opportunity to take a step 
back and consider the involved stakeholders and other seemingly 
indirect factors that contribute to a problem’s nuance and complexity. 
After the relevant elements and relations are assessed, new proposals 
of how to act can be thoughtfully made.   

Completing a systems analysis before implementing changes 
can help avoid unintended consequences of solving one problem 
while accidentally creating a new problem. For example, the cane toad 
was introduced in Australia in 1935 to control the destructive beetles 
that ate sugarcane crops, but the cane toad’s internal poison caused an 
unforeseen decline in larger predators. 252  Complex systems, like 
ecosystems and businesses, have tightly coupled aspects where a small 
modification can have large unforeseen consequences. Systems 
analysis provides insight for understanding so-called “wicked 
problems”, which are problems where solutions generate new 
problems, which can create a scenario that may be impossible to solve. 
It is essential to consider relevant factors to design systemic solutions. 

There are many methods to support developing solutions 
within complex systems. The strength, weakness, opportunities, and 
threats, or SWOT, matrix analyzes how a decision will be helpful or 
harmful for both internal and external factors. A SWOT diagram is 
useful when making strategic business, political, and organizational 
decisions. Another tool for making decisions is a criteria matrix, which 
compares how multiple decisions will impact various criteria. The 
positive as well as negative results generated by a decision across 
relevant criteria can be considered as a whole when making decisions. 
These tools can inform decision making in complex systems that span 
multiple variables and have far reaching consequences.  

 
 

 Helpful Harmful   Decision 1 Decision 2 Decision 3 
Internal Strengths  

(a,b,c,…) 
Weaknesses  

(d,e,f,…) 
 Criteria A 1A 2A 3A 
 Criteria B 1B 2B 3B 

External Opportunities  
(g,h,i,…) 

Threats 
(j,k,l,…) 

 Criteria C 1C 2C 3C 
 Criteria D 1D 2D 3D 

 

 SWOT Analysis                    Criteria Matrix 

Figure 12-11 Analysis and Decision Frameworks 
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Causal loop diagrams are another tool to analyze 
systems and devise solutions. A causal loop diagram identifies 
how the factors in a system influence one other through either 
direct relations (+ arrow) or inverse relations (- arrow). An 
causal loop diagram example relating to agriculture is pictured 
in Figure 12-12. Measures like forage biomass and 
environmental quality have a direct relationship (+ arrow) 
because when the biomass increases, the environmental quality 
increases. On the other hand, an increasing herd size will 
decrease the amount of forage biomass, which is an inverse 
relationship (- arrow). These diagrams identify the causal 
influences between many factors as well as how their 
relationships reinforce or balance each other.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-12 Causal Loop Diagram of Conventional Agriculture Sector 

Causal loop diagrams support holistic decision making within 
complex systems by making it easier for stakeholders to see the big 
picture, develop a shared understanding of the system, and identify 
levers of change. Mathematical equations can also be added to model 
the resulting outcomes to help inform decision making. In systems 
analysis, complex problems cannot be thought about in terms of 
isolated factors, but rather as networks of interrelated connections. 
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Example 12.4  
Balancing Feedback 

Balancing feedback self-
corrects. For example, 
larger prey populations 
support more predators 
(+ arrow), but increased 
predation reduces prey 
populations (- arrow). 
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There are many different strategies to effectively intervene in 

complex systems in our world.  In the book Thinking in Systems, Donella 
Meadows identifies twelve methods to intervene in systems to create 
change.253 Specific examples of these intervention strategies are named in 
Figure 12-13. Strategies 12 through 9 focus on short-term practical results, 
like changing the constants determining various flows in a system and 
adding buffers to support stabilizing resources. Strategies 8 through 4 
prioritize highly leveraged relations, like introducing feedback, new 
communication flows, and self-organization. Finally, strategies 3 through 1 
focus on changing the deeper goals and underlying paradigms.  

 
 

 

12. Numbers Change a particular constant to influence the system: e.g., change a given tax 
rate to a lower or higher percentage. 
 

11. Buffers Change the size of stabilization stocks: e.g., increase food storage capacity to 
maintain resources over droughts and shortages. 
 

10. Stock-and-
Flow Structures 

Add in new structures or change the structure that manages the flow in a 
system: e.g., add a battery to a power grid to store energy in new ways. 
 

9. Delays Change the length of time for a flow to be realized: e.g., decrease delays in 
business communication to promote faster adaptive action.      
 

8. Balancing 
Feedback 

Support self-balancing feedback loops: e.g., increase taxes on larger incomes 
to promote greater wealth equality. 
 

7. Reinforcing 
Feedback 
 

Support reinforcing feedback loops: e.g., use monetary savings from energy 
efficiency projects to invest in more efficiency projects.     
 

6. Information 
Flows 
 

Change the information flow within a system: e.g., require new sustainability 
disclosures from corporations to add information to the market. 
 

5. Rules 
 

Change incentives, punishments, and constraints: e.g., add a new law that 
fines unsustainable activities, like fishing in protected zones. 
 

4. Self-
Organization 
 

Change the ability to create ordered states and adapt: e.g., create a digital 
media platform that enables new self-organized activity. 
 

3. Goals 
 

Change the purpose or function of the system: e.g., change a corporation’s 
goal to explicitly include benefits for society and other stakeholders.   
 

2. Paradigms 
 

Change the mindset, goals, structure, rules, and parameters in systems: e.g., 
move from an endless growth model to a sustainability-focused economy. 
 

1. Transcending 
paradigms 

Facilitate changes to new paradigms: e.g., support education that allows 
evaluating the current paradigm and developing new solutions.  
 

 
Figure 12-13 Intervening in Systems 
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Transforming Paradigms  
 

A society’s overarching model, or paradigm, for understanding nature, 
can be transformed over time. The basic process of transforming 
scientific models is summarized in Figure 12-14, whereby a model 
changes to better predict collected evidence. New models are usually 
led by early pioneers to better account for anomalies in the current 
model, until a tipping point is reached which makes the new view 
widely accepted. Thomas Kuhn presented frameworks to understand 
how scientific paradigms transform in the book The Structure of 
Scientific Revolutions.   
 Scientific theories are changed over time through feedback 
between observers, formal systems, and real systems in nature. 
Observers can postulate a theory of nature within a formal system, 
which is then confirmed or denied through experiments within certain 
degrees of accuracy. Any formal systems can be posed, but the 
scientific method works to test which theories best describe nature. 
The scientific method iteratively compares formal systems with real-
world evidence, as shown in Figure 12-15. New models of science are 
typically accepted because there is a larger domain of applicability and 
higher degrees of accuracy that makes these theories more powerful.  
 
 

 
 

Figure 12-15 Testing Scientific Theories 
 

 While it is often believed that the current explanation of 
nature, or scientific paradigm, is a fixed source of truth, foundational 
scientific assumptions can be reformulated with new evidence. For 
example, it was commonly believed that the Earth, instead of the Sun, 
was the center of the solar system until the Copernican Revolution. 
Additionally, modern scientific theories, like relativity and quantum 
mechanics, provided completely new ways to understand fundamental 
assumptions of space, time, and energy. New scientific models can 
completely transform previous ideas. However, new scientific models 
should be at least as good, and ideally better, at predicting results 
observed in nature compared to previous models.  
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Periods in which scientific paradigms drastically change are 

called scientific revolutions. The 18th century saw the rise of 
mechanistic Newtonian physics in the European Scientific 
Revolution, along with technologies for the Industrial Revolution. The 
quantum mechanics revolution in the early 1900s showed that 
microscopic phenomena in the world are probabilistic, uncertain, 
and follow a wave-matter duality that requires interactions for 
measurements. New findings in the 1950s, like chaos theory and 
information theory, further challenged beliefs of predictability and 
reducibility and as demonstrated that different effects can emerge 
from the whole. In the 21st century, new sciences like climate science 
and regenerative design are revealing the deep interconnections 
between society and nature. Systems science provides a cohesive view 
of many of the findings of the 20th and 21st centuries and presents a 
paradigm of science based on complexity and interconnection. 
Highlighted paradigm transformations that contributed to the 
development of a systems-based view of science are reviewed in 
Figure 12-16. This graph shows approximate adoption curves of 
various theories that have become part of modern science. While 18th 
century physics supported the idea of perfect predictability and the 
ability to reduce any problem, modern systems science shows the 
world must be considered as highly interconnected, chaotic, and 
complex. A systems science approach is able to provide unifying view 
of the new paradigms that challenge the18th century parts-based view.  

 

 
 

 

Figure 12-16 Evolution of Scientific Worldviews  

The science of complex systems now supports a wide range 
of worldviews that are a fundamentally different from the parts-based 
paradigm. Fields like chaos theory show that some systems are not 
predictable and irreducible. Even computer simulations with simple 
rules cannot always be decidable to a yes or no answer. Important 
belief transitions supported in a systems-based paradigm—such as 
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undecidability—are summarized in Figure 12-7. The new systems-
based paradigm provides a more coherent understanding of science 
and tools to create effective solutions.  

 
 

Parts-Based paradigm →  Evidence for transition Systems paradigm 

Isolated identity →  Quantum wave collapse  Relational identity 

Predictability   →  Three-body problem  Chaotic systems   

Reducibility →  Uncomputable numbers  Irreducibility 

Completeness →  Gödel incompleteness theorem Incompleteness 

Bottom-up biology →  Genomic networks, epigenetics Nature & nurture 

Human-nature dualism →  Climate change, resource limits Sustainable design 
 

 

Figure 12-17 Systems Paradigm Transitions 
 
While complex and connected systems present new evidence 

that challenges previous scientific paradigms, the general field of 
systems theory is not limited to one given model. Ancient frameworks, 
classical physics, and quantum mechanics are all different systems 
with different assumptions. Systems theory gives insight into the 
process of generating any given model, from simple to complex, or 
reducible to irreducible. The science of systems is not rigidly tied 
down to a specific paradigm because any set of beliefs is organized 
via systems. At its core, systems theory is about the process of how 
knowledge itself is acquired and the limitations of what can be known.  
Systems theory is a metatheory that transcends any one particular 
proposed model. With that said, the science of complex systems 
underscores the necessity to include irreducible emergence and 
interconnectivity into any comprehensive model of logic and science.  

 
Summary 

 

A systems-based view, which acknowledges interrelationships and 
complexity, provides toolsets to implement strategic change. Complex 
problems often arise in engineering and social systems, which can 
only be addressed by systemic solutions. A systems-based approach 
provides a new lens to consider problems within the context of the 
interconnected whole, which is critical to evaluating sustainability 
solutions that can serve a broad set of stakeholders. From a systems 
perspective, change is accelerated by strategically influencing the 
leverage points of complex networks. 
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Conclusion 

 
Together, a systems-based view presents a new way to connect the 
disciplines of science and work towards sustainable solutions. As 
active and intelligent change agents, humanity can use systems 
thinking to refine our models of understanding nature and designing 
positive outcomes. While complex systems science is supported by 
modern evidence, the implications have yet to translate to our 
psychological, cultural, political, economic, and management 
frameworks, which often remain fixed in a past era of thought of 
separateness and reducibility. Integrating interconnection and 
complexity, which are the core attributes of the systems view, is 
essential to evolve our frameworks to be more insightful and effective. 

Global intellect is continuously changing, and each individual 
will help shape the future of the world. My hope is that in the next 50 
years, we can look back at our current industrial crisis as a turning 
point to catalyze sustainable design and thriving communities. This 
new turning point is based on fostering resilient connections. Each 
person is a part of making this a reality. Going forward, the ultimate 
application of systems science is through your actions to shape our 
complex world. 
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§ Figure 3-5: Economic Systems. David Shugar. Powerpoint. April, 2023. 
§ Figure 3-6: Domains of Emergent Models. David Shugar. Powerpoint. March, 2023. 
§ Figure 3-7: Domains of Natural Sciences. David Shugar. Powerpoint. March, 2023. 
§ Figure 3-8: Equivalent Mappings. David Shugar. Powerpoint. April, 2023. 
§ Figure 3-9: Emergent Theory Connections. David Shugar. Powerpoint. November, 2022. 
§ Figure 3-10: Limiting Outputs. David Shugar. Powerpoint. February, 2024. 
§ Figure 3-11: Interpretations and Emergent Limits. David Shugar. Powerpoint. February, 2024. 
§ Figure 3-12: Emergent Element Types. David Shugar. Word. December, 2023. 
§ Figure 3-13: Emergent Element Mappings. David Shugar. Word. December, 2023. 
§ Figure 3-14: Nesting Emergent Elements. David Shugar. Word. December, 2023. 
§ Figure 3-15: Equivalent and Emergent Models. David Shugar. Powerpoint. February, 2024. 
§ Figure 3-16: Generative Effects in Two Systems. David Shugar. Powerpoint. February, 2024. 
§ Figure 3-17: Reducibility and Irreducibility. David Shugar. Powerpoint. February, 2024. 
§ Figure 3-18: Cellular Automata Classes. David Shugar. Processing. November, 2022. 
§ Figure 3-19: Game of Life Cellular Automata. David Shugar. Powerpoint. November, 2022. 
§ Figure 3-20: Brute-force Test. David Shugar.  Powerpoint. November, 2022. 
§ Figure 3-21: Bottom-Up and Top-Down Factors. David Shugar. Powerpoint. November, 2022. 
§ Figure 3-22: Self-Hierarchical Systems. David Shugar. Powerpoint. November, 2022.  
§ Figure 3-23: Strange Loops. David Shugar. Photo. 2009. Sakurambo.  Public Domain. A "Penrose stairs" optical 
illusion. Wikipedia Commons. May, 2005. https://commons.wikimedia.org/wiki/File:Impossible_staircase.svg 
§ Figure 3-24:. Feedback of Systems. David Shugar  Powerpoint and Photo. January, 2019. 

 

Chapter 4 – History 
 

§ Example 4.1: Stonehenge: Public Domain License. Good Free Photos. Freesally. “Stonehenge under the sunset 
skies.”  https://www.goodfreephotos.com/england/other-england/stonehenge-under-the-sunset-skies.jpg.php  
§ Example 4.2: Great Pyramid of Giza. Standard License Purchased. iStock. Stock photo ID:177047347.  
§ Example 4.3: Flower of Life. Photoshop. David Shugar. June, 2019. 



 

 

§ Example 4.4: Ptolemaic Solar System Model. Fastfission. Wikipedia Commons. Ptolemaic elements. 
https://commons.wikimedia.org/wiki/File:Ptolemaic_elements.svg 
§ Example 4.5: Euclid’s Axioms. Word. David Shugar. June, 2019.   
§ Example 4.6: Algebra: Word. David Shugar. June, 2019.   
§ Example 4.7: Kepler’s Laws. Powerpoint. David Shugar. November, 2022. 
§ Example 4.8: Evolving Cosmological Systems. Powerpoint. David Shugar. November, 2019. 
§ Figure 4-1: History Equation. Word. David Shugar. December, 2018.  
§ Figure 4-2: Ancient Geometric Developments. Photoshop. David Shugar. February, 2014.  
§ Figure 4-3: Stonehenge Complex. Standard License Purchased. iStock. Stock photo ID: 1475093996.  
§ Figure 4-4: Symbols of Change and Interconnection. Hand-Drawn and Photoshop. David Shugar. April, 2014. 
§ Figure 4-5: Ancient Systems of Elements and Hierarchies. Hand-Drawn and Photoshop. February, 2014. Flower of 
Life. Hand-drawn. David Shugar. April, 2014.  
§ Figure 4-6: Taoist Cosmology System. Powerpoint.  David Shugar. April, 2014. 
§ Figure 4-7: Platonic Solids and Associate Elements. Open Processing. David Shugar, June, 2014.  
§ Figure 4-8: Achievements of Ancient Architecture. Standard License Purchased. iStock. Stock photo ID: 
1135048639; Public Domain License. Giovanni Paolo Panini. Interior of the Pantheon, Rome. 1730’s. 
https://commons.wikimedia.org/wiki/File:Pantheon-panini.jpg 
§ Figure 4-9: Islamic Architecture. Standard License Purchased. iStock. Stock photo ID: 183931164.  
§ Figure 4-10: Hindu-Arabic Numeral System. David Shugar, Powerpoint, Feburary, 2019.  
§ Figure 4-11: Renaissance Art Works : Da Vinci’s Vitruvian Man and Michelangelo’s School of Athens: Public 
Domain License. Vitruvian Man. Leonardo da Vinci. 1492. https://en.wikipedia.org/wiki/File:Vitruvian.jpg; 
Public Domain License.  Raphael, The School of Athens, 1509–1511, fresco at the Raphael Rooms, Apostolic 
Palace, Vatican City https://commons.wikimedia.org/wiki/File:Sanzio_01.jpg  
§ Figure 4-12: Newton’s Laws of Mechanics. Word. David Shugar. November, 2015.   
§ Figure 4-13: Force of Gravity and Collisions in Classical Mechanics. Photoshop. David Shugar. November, 2015.  
§ Figure 4-14: Global Human-caused Carbon Emissions. David Shugar. Powerpoint. October, 2018. Data from 
World Resources Institute. October, 2018. CAIT Climate Data Explorer. http://cait2.wri.org 
§ Figure 4-15: Unsustainable and Extractive Economics. David Shugar. Powerpoint. October, 2018. 

 

Chapter 5- Equilibrium 
 

§ Example 5.1: Balancing Rocks: Standard License Purchased. iStock. Stock photo ID: 1254418573.  
§ Example 5.2 Stocks and Flows Using Calculus. Word. David Shugar. July, 2019.  
§ Example 5.3 Force Orientation. Word. David Shugar. March, 2022.  
§ Example 5.4 Relational Speed. Word. David Shugar. July, 2019.  
§ Example 5.5 Einstein’s Equation. Word. David Shugar. November, 2022.  
§ Example 5.6 Conservation Laws. Word. David Shugar. November, 2022.  
§ Figure 5-1: Equation of Equilibrium. Word. David Shugar. February, 2019. 
§ Figure 5-2: Velocity Vectors in Trajectory. Photoshop. David Shugar. February, 2014.  
§ Figure 5-3: Arch Vectors in Equilibrium. Photoshop. David Shugar. February, 2019. 
§ Figure 5-4: Orthogonal Coordinate Systems: Photoshop. David Shugar. March, 2014.  
§ Figure 5-5: Continuous Vector Fields. Photoshop. David Shugar. December, 2016. 
§ Figure 5-6: Derivatives and Integrals. Photoshop. David Shugar. June, 2019. 
§ Figure 5-7: Surface Gradients. David Shugar. June, 2019. 
§ Figure 5-8: Interpreting Vector Fields. Word. David Shugar. December, 2016.   
§ Figure 5-9: Divergence and Curl in Electric and Magnetic Fields. Photoshop. David Shugar. April, 2014. 
§ Figure 5-10 Second Order Derivative. Word. David Shugar, December, 2016. 
§ Figure 5-11. Laplacian Surface. Photoshop. David Shugar. March, 2014. 
§ Figure 5-12: Laplacian Equation on a Surface. Open Processing, Photoshop. David Shugar. April, 2014.  
§ Figure 5-13: Laplacian Shapes in Electromagnetic Fields. Open Processing. David Shugar. April, 2014.  
§ Figure 5-14: Systems with Laplacian Fields. Photoshop. David Shugar. May, 2015. Standard License Purchased. 
iStock. Stock photo ID: 517699523.  
§ Figure 5-15: Stable Systems in Nature. Powerpoint. David Shugar. November, 2022.   
§ Figure 5-16: Catenary Curves. Photoshop. David Shugar. November, 2022.   
§ Figure 5-17: Catenary Arches. Photoshop. David Shugar. November, 2022 
§ Figure 5-18: Tensegrity Forms. Photoshop. David Shugar. November, 2022 
§ Figure 5-19: Principle of Least Action. Word. David Shugar. February, 2019. 



 
§ Figure 5-20: Symmetry and Conservation Laws. Word. David Shugar. June, 2022. 
§ Figure 5-21: Conservation Laws and Interactions. Word. David Shugar. June, 2022. 
§ Figure 5-22: Time Dilation in Special Relativity. Word. David Shugar. February, 2022 
§ Figure 5-23: Lightcone Diagrams. David Shugar. Photoshop. December, 2016.  
§ Figure 5-24: Curved Space. Photoshop. David Shugar. April, 2015.  
§ Figure 5-25: Curved Spacetime. Standard License Purchased. iStock. Stock photo ID: 1468844846.  
§ Figure 5-26: Lightcone in Expanding Universe. Photoshop. David Shugar.  
§ Figure 5-27: Universe with Closed and Open Systems. Photoshop. David Shugar. May, 2019. 
§ Figure 5-28: Continuum Equations. David Shugar. Photoshop. December, 2022 
 

Chapter 6 – Flux 
 

§ Example 6.1: Splash of Water. Standard License Purchased. iStock. Stock photo ID: 1456384223.  
§ Example 6.2: Isolated and Open System Flux. Word. David Shugar. October, 2022. 
§ Example 6.3: Diffusion in Biology. Powerpoint. David Shugar. October, 2022. 
§ Example 6.4: Imaginary Axis Spiral and Waves. Processing and Photoshop. David Shugar. February, 2016 
§ Example 6.5: Quantum vs. Classical Waves. Photoshop. David Shugar. June, 2019 
§ Example 6.6: Legend of Periodic Table. Word. David Shugar. June, 2019 
§ Example 6.7: Nonlinear Functions. Word. David Shugar. June, 2019 
§ Example 6.8: BZ Reaction. Open Processing. David Shugar. December 2022. 
§ Figure 6-1: Equation of Flux. Word. David Shugar. February, 2019. 
§ Figure 6-2: Types of Flux. Powerpoint. David Shugar. July, 2019. 
§ Figure 6-3: Growth, Decay and Balance Equation for Systems. Powerpoint. David Shugar. July, 2019. 
§ Figure 6-4: Diffusion of Dye in Bowl of Water. Photoshop. David Shugar. May, 2015. 
§ Figure 6-5: Diffusion Equation. Word. David Shugar. December, 2016.  
§ Figure 6-6: Wave, Pendulum, and Spiral. Photoshop. David Shugar, April, 2014 
§ Figure 6-7: Wave Equation. Word. David Shugar. December, 2016.  
§ Figure 6-8: Tuning Fork Sound Waves. Photoshop. David Shugar. October, 2015.  
§ Figure 6-9: Wave Harmonics. Photoshop. David Shugar, October, 2015. 
§ Figure 6-10: Wave Superposition. Open Processing and Photoshop. David Shugar. October, 2015. 
§ Figure 6-11 Fourier Transform. Open Processing and Photoshop. David Shugar. October, 2015.  
§ Figure 6-12: Harmonic Cycles of Sun, Moon, and Tides. Photoshop. David Shugar. April, 2014.  
§ Figure 6-13: Harmonics of a Circular Surface. Open Processing and Photoshop. David Shugar. October, 2015. 
§ Figure 6-14: Harmonics of a Square Surface. Open Processing and Photoshop. David Shugar. October, 2015. 
§ Figure 6-15: Harmonics of a Cubic Volume. Open Processing. David Shugar November, 2015. 
§ Figure 6-16: Electromagnetic Wave. Standard License Purchased. iStock. Stock photo ID: 1194626452.  
§ Figure 6-17: Refraction in Lenses. Photoshop. David Shugar. August, 2015. 
§ Figure 6-18: Dispersion in Prism. Photoshop. David Shugar. August, 2015. 
§ Figure 6-19: Electromagnetic Spectrum. Photoshop. David Shugar. August, 2015. 
§ Figure 6-20: Energy Quanta. Photoshop. David Shugar. August, 2015. 
§ Figure 6-21: Double Slit Experiment. Photoshop. David Shugar. November, 2015 
§ Figure 6-22: Electron Orbital Photon Emission and Absorption. Photoshop. David Shugar. December, 2015 
§ Figure 6-23: Electron Orbital Diagrams. Open Processing. David Shugar. Feburary, 2015. 
§ Figure 6-24: Orbital Hybridization and Molecular Bonding. Open Processing. David Shugar. December, 2016. 
§ Figure 6-25: Coherence in Laser Light . Photoshop. David Shugar. December, 2016. 
§ Figure 6-26: Nonlinear Properties. Photoshop. David Shugar. December, 2018. 
§ Figure 6-27: Diffusion-Reaction. Open Processing. David Shugar. December, 2022. 
§ Figure 6-28: Convection Currents. Photoshop. David Shugar. December, 2016. Palabos LBM Wiki. 2D Rayleigh-
Bénard convection. 2011. http://wiki.palabos.org/community:gallery:rb_2d  
§ Figure 6-29: Dissipative Systems. Standard License Purchased. iStock. Stock photo ID: 1194626452;. Stock photo 
ID: 1188714595;. Stock photo ID: 1059301550.  
 

Chapter 7 – Symmetry 
 

§ Example 7.1: Flower Symmetry. David Shugar. November, 2018. Geometry of Flower 
§ Example 7.2: Triangle Symmetry. David Shugar. Photo. Powerpoint. November, 2018.  



 

 

§ Example 7.3: Matrix Symmetry. David Shugar. Word. November, 2018.  
§ Example 7.4: Densest Hypersphere Lattices. Word. October, 2022. 
§ Example 7.5: Dn Group. Word. October, 2022.  
§ Example 7.6: Elementary Particles. Word. October, 2022.  
§ Figure 7-1: Equation for Symmetry. Word. David Shugar. February, 2019. 
§ Figure 7-2: Circles in Moon, Onion, and Beet. Photo. David Shugar, March, 2014. Standard License Purchased. 
iStock. Stock photo ID:  
§ Figure 7-3: Fold Symmetries of a Circle. Photoshop. David Shugar. June, 2015. 
§ Figure 7-4: Fold Symmetries in Nature. Photo and Photoshop. David Shugar. June, 2015. 
§ Figure 7-5: Symmetries in City Planning. Photoshop. David Shugar. June, 2015. 
§ Figure 7-6: Circular Packing and Polygons. PowerPoint. David Shugar. June, 2015. 
§ Figure 7-7: Regular Tiling and Pentagon Tiling. Photoshop. David Shugar. June, 2015. 
§ Figure 7-8: Golden Ratio Spiral Packing Pattern. Open Processing, Photo. David Shugar. June, 2015. 
§ Figure 7-9: Golden Spiral in Plants. Photo. David Shugar. June, 2015. 
§ Figure 7-9: Commons Volumetric Shape. Photoship. David Shugar. June, 2015. 
§ Figure 7-11: Platonic Solids Duals. Open Processing. David Shugar. May, 2015. 
§ Figure 7-12: Octahedron, Star Tetrahedron, and Cube. Open Processing. David Shugar. May, 2015. 
§ Figure 7-13: Flower of Life, Metatron’s Cube, and Platonic Solids. Photoshop. David Shugar. September, 2015 
§ Figure 7-14: Spherical Drops and Bubbles. Photo. David Shugar. February, 2014  
§ Figure 7-15: Spherical Packings. Open Processing and Photo. David Shugar. February, 2014 
§ Figure 7-16: Molecular Geometry of Electron Pairs. Photoshop. David Shugar. September, 2015 
§ Figure 7-17: Geometry of Early Embryo. Photoshop. David Shugar. September, 2015 
§ Figure 7-18: Packing Symmetries in Seed Pods, Fruits, and Flowers. Photo. David Shugar. July, 2015.  
§ Figure 7-19: Icosahedral Symmetry in Viruses and Radiolarians. Drawn and Photoshop. David Shugar. July, 2015 
§ Figure 7-20: Geodesic Domes. Photoshop. David Shugar. September, 2015; Standard License Purchased. iStock. 
Stock photo ID: 177374776.  
§ Figure 7-21: Cubic Closed Packing. Open Processing and Photo. David Shugar. November, 2014 
§ Figure 7-22: Cubic Crystal Orientations. Open Processing and Photo. David Shugar. November, 2014 
§ Figure 7-23: Cubic Closed Packing Vs. Hexagon Closed Packing. Photoshop. David Shugar. December, 2016 
§ Figure 7-24: Crystal Lattices In Common Materials. Open Processing and Photo. David Shugar. November, 2014 
§ Figure 7-25: Macroscopic Crystal Forms. Photo. David Shugar. July, 2015. 
§ Figure 7-26: Quasicrystals and Icosahedral Symmetry. Photoshop. David Shugar. December, 2016. Standard 
License Purchased. iStock. Stock photo ID: 480903281.  
§ Figure 7-27: Hypersphere. Public Domain License. Philip Kanellopoulos. Wikipedia Commons. Hypersphere of 
Perístanom. December, 2014. 
https://commons.wikimedia.org/wiki/File:Hypersphere_of_Per%C3%ADstanom.svg 
§ Figure 7-28: Four-Dimensional Regular Polytopes. Public Domain License. Obermeyer, Fritze. July 2006. CMU. 
https://www.math.cmu.edu/~fho/jenn/polytopes/ 
§ Figure 7-29: 24-Cell Orthogonal Projection. Powerpoint. David Shugar. July, 2021. 
§ Figure 7-30: Higher Dimensional Physics. Powerpoint. David Shugar, March, 2014. Standard License Purchased. 
iStock. Stock photo ID: 1066999822.  
§ Figure 7-31: Symmetry Group of an Equilateral Triangle. Powerpoint. David Shugar. October, 2022. 
§ Figure 7-32: Coxeter Groups and Polytope Families. Word. David Shugar. October, 2022. 
§ Figure 7-33: Rotation Groups. Powerpoint. David Shugar. October, 2022. 
§ Figure 7-34: Unitary Groups. Powerpoint. David Shugar. October, 2022. 
§ Figure 7-35: Symmetries in Standard Model of Particle Physics. Word. David Shugar. October, 2022.          
 

Chapter 8 – Fractals 
 

§ Example 8.1: Fractal Leaf. Pxhere. January, 2017. Public Domain License. Pxhere. 
https://pxhere.com/en/photo/423502  
§ Example 8.2: Fractal Triangle. David Shugar. Powerpoint. November, 2018.  
§ Example 8.3: Coastline Paradox. David Shugar. Powerpoint. October, 2022. 
§ Example 8.4: Hausdorff Dimension. David Shugar. Word. November, 2018. 
§ Example 8.5: Power Law Distribution. David Shugar. Powerpoint. October, 2022. 
§ Figure 8-1: Equation for Fractals. Word. David Shugar. February, 2019. 
§ Figure 8-2: Triangle, Square, and Pentagon Fractal. Photoshop. David Shugar. September, 2014.   



 
§ Figure 8-3: Regular Polyhedron with Fractal Stacking. Open Processing. David Shugar. December, 2015.  
§ Figure 8-4: Koch Snowflake. Photoshop. David Shugar. December, 2015 
§ Figure 8-5: 3-D Koch Snowflake. Open Processing. David Shugar. September, 2014.                 
§ Figure 8-6: Fractal Dimensions and Scaling. Photoshop. David Shugar. December, 2015 
§ Figure 8-7: Scaling a Triangle and a Sierpinski Fractal. Processing and Photoshop. David Shugar. December, 2015 
§ Figure 8-8: Fractal Patterns in Plant Morphology. Photo. David Shugar. May, 2014. Standard License Purchased. 
iStock. Stock photo ID: 501710688.  
§ Figure 8-9: Fibonacci Numbers and Morphology Patterns. Hand Drawing. David Shugar. Feb, 2013.  
§ Figure 8-10: Golden Ratio. Photoshop. David Shugar. May, 2015 
§ Figure 8-11: Golden Ratio in Human Body. Photo and Photoshop. David Shugar. May, 2015. Public Domain 
License. Leonardo Da Vinci. Vitruvian Man. Circa 1492. 
https://commons.wikimedia.org/wiki/File:Da_Vinci_Vitruve_Luc_Viatour.jpg  
§ Figure 8-12: Golden Ratio Spiral and Spiral in Nature. Open Processing and Photoshop. David Shugar. March, 
2016. Standard License Purchased. iStock. Stock photo ID: 544822750; Stock photo ID: 1059301550.  
§ Figure 8-13: Dendritic Formations. Open Processing, David Shugar July, 2015; Standard License Purchased. 
iStock. Stock photo ID: 1077755368.  
§ Figure 8-14: Dendrites in Geophysical Patterns Photo. David Shugar. December 2015. Public Domain License. 
Nasa. Yarlung Tsangpo river tibet  April 2001. https://photojournal.jpl.nasa.gov/catalog/PIA03708  
§ Figure 8-15: Neuron Structure. Photoshop. David Shugar. December, 2016 
§ Figure 8-16: Neural Network. Standard License Purchased. Stock photo ID: 1187215756.  
§ Figure 8-17: Fractal Branching. Photoshop. David Shugar. December, 2016 
§ Figure 8-18: Chaos Game Fractals in Regular Polygons. Open Processing. David Shugar. September, 2014.                 
§ Figure 8-19: Scale-Invariant Fractal of Random Walk in 1-D. Open Processing. David Shugar. September, 2014.                 
§ Figure 8-20: Random Walk Fractal Landscapes. Excel. David Shugar. December, 2016 
§ Figure 8-21: Random Walk in Box and Many Particle Walk. Open Processing. David Shugar. June 2015. 
§ Figure 8-22: Fractals in Fluid Turbulence. Photo. David Shugar. February, 2019 
§ Figure 8-23: Chaotic Attractors. Photoshop. David Shugar. May, 2023; Public Domain License Cepheus. Lorenz 
attractor. Wikipedia Commons. October 2006. https://commons.wikimedia.org/wiki/File:Lorenz_attractor2.svg 
§ Figure 8-24: Magnifications of the Mandelbrot Set. Public Domain License. SimsContPics, Wikipedia Commons. 
January, 2010. https://commons.wikimedia.org/w/index.php?curid=9374345 
§ Figure 8-25: Power Laws and Logarithmic Scales. Photoshop. David Shugar. December, 2022 
§ Figure 8-26: Scale-free Critical Points. Photoshop. David Shugar. December, 2022 
§ Figure 8-27: Scale-free Networks. Photoshop. David Shugar. December, 2022 
§ Figure 8-28: Long-Tailed Functions. Photoshop. David Shugar. December, 2022 
§ Figure 8-28: Scale Invariance and Scale Variance. Photoshop. David Shugar. December, 2022 

 

Chapter 9 –Organization  
 

§ Example 9.1: Peacock Patterns. Standard License for Use Purchased. iStock. Stock photo ID: 847144522.  
§ Example 9.2: Organization. David Shugar. Excel. November, 2018.  
§ Example 9.3: Entropy Definitions. David Shugar. Word. November, 2022.  
§ Example 9.4: Constructors & Life. David Shugar. Word. November, 2022.  
§ Example 9.5: Biochemical Networks. David Shugar. Powerpoint. November, 2018.  
§ Example 9.6: Trophic Cascades. David Shugar. Word. November, 2022.  
§ Example 9.7: Thermostat Feedback. David Shugar. Word. June, 2019.  
§ Example 9.8: Self-organizing. David Shugar. Word. November, 2018.  
§ Figure 9-1: Equation for Organization. Word. David Shugar. February, 2019. 
§ Figure 9-2: Order in Open Systems. PowerPoint. David Shugar. June, 2022 
§ Figure 9-3: Carnot Heat Engine. PowerPoint. David Shugar. June, 2022 
§ Figure 9-4: Entropy and Microstates. PowerPoint. David Shugar. June, 2022 
§ Figure 9-5: Entropy and Energy Dispersion. PowerPoint. David Shugar. June, 2022 
§ Figure 9-6: Exergonic versus Endergonic Reactions. PowerPoint. David Shugar. June, 2022 
§ Figure 9-7: ATP Energy Exchange. PowerPoint. David Shugar. June, 2022 
§ Figure 9-8: Metabolic Reactions. PowerPoint. David Shugar. June, 2022 
§ Figure 9-8: Animal Cells. PowerPoint. David Shugar. June, 2022 
§ Figure 9-9: Autopoietic Systems. PowerPoint. David Shugar. March, 2023 



 

 

§ Figure 9-10: Living Systems Theory. PowerPoint. David Shugar. March, 2023 
§ Figure 9-11: Animal Cell. PowerPoint. David Shugar. March, 2023 
§ Figure 9-12: Molecular Building Blocks of Life. Photoshop. May, 2022. Standard License for Use Purchased. 
iStock. Stock photo ID: 1436110208.; Standard License for Use Purchased. iStock. Stock photo ID: 1483447285.  
§ Figure 9-13: Molecular Structure of Protein. Photoshop. David Shugar. May, 2023. Standard License for Use 
Purchased. iStock. Stock photo ID: 1436110208.  
§ Figure 9-14: Liquid Crystals. PowerPoint. David Shugar. June, 2022. 
§ Figure 9-15: Water Clusters and Exclusion Zones. PowerPoint. David Shugar. June, 2022. 
§ Figure 9-16: Cell Differentiation. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-17: Nested System of Structure in Muscle. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-18: Principles in Ecology. Powerpoint. David Shugar. October, 2018.  
§ Figure 9-19: Food Webs. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-20: Vertebrae Evolution. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-21: Diverse Ecosystems. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-22: Cybernetic Loop. Powerpoint. David Shugar. April, 2020.  
§ Figure 9-23:  Swarm Intelligence. Powerpoint. David Shugar. June, 2022. 
§ Figure 9-24: Cognitive Organization and the Environment. PowerPoint. David Shugar. January, 2017 

 

Chapter 10 – Information  
 

§ Example 10.1: Neural Network. Standard License for Use Purchased. Stock photo ID: 1187215756.  
§ Example 10.2: Surprisal and Information. David Shugar. Word. May, 2023.  
§ Example 10.3: Shannon Entropy. David Shugar. Word. May, 2023. 
§ Example 10.4: Schrödinger Equation. David Shugar. Word. May, 2023. 
§ Example 10.5: Relational Quantum Mechanics. David Shugar. Word. December, 2019.  
§ Example 10.6: Von Nuemann Entropy. David Shugar. Word. May, 2023. 
§ Example 10.7: Black Hole Entropy. David Shugar. Photoshop. March, 2017. 
§ Example 10.8: Time Complexity. David Shugar. Word. January, 2020. 
§ Example 10.9: Reducing Neural Network Errors. Excel and Word. January, 2020. 
§ Example 10.10: Hexagon Grid Cells. David Shugar. Photoshop. May, 2023. 
§ Example 10.11: Emergence of Knowledge. David Shugar. Word. March, 2024. 
§ Example 10.3: Information Signal. David Shugar. Powerpoint. May, 2018.  
§ Example 10.4: Rényi Entropy. David Shugar. Word. December, 2019.  
§ Example 10.5: Ordering in Systems. David Shugar. Word. December, 2019.  
§ Figure 10-1: Equation for Information: David Shugar. Word. October, 2018. 
§ Figure 10-2: Shannon Entropy. David Shugar. Word. May, 2023. 
§ Figure 10-3: Shannon-Weaver Communication Model. David Shugar. Word. May, 2023. 
§ Figure 10-4: Mutual Information. David Shugar. Word. May, 2023. 
§ Figure 10-5: Quantum Probability Field. David Shugar. Processing. October, 2017.  
§ Figure 10-6: Matter-based vs. Information-based Interpretations. David Shugar. Powerpoint. December, 2018. 
§ Figure 10-7: Holographic Information Encoding . David Shugar. Photoshop. October, 2018 
§ Figure 10-8: Holographic Universe. David Shugar. Processing and Photoshop. October, 2017 
§ Figure 10-9: Table of Information Mediums. David Shugar. Microsoft Word. October, 2018. Data sourced from 
Extand, Andy. (August, 2016). Nature, “How DNA could store all the world’s data”  
§ Figure 10-10: Quantum Qubits. David Shugar. Excel. October, 2018. 
§ Figure 10-11: Computing Units of Different Information Systems. David Shugar. Microsoft Word. October, 2018.   
§ Figure 10-12: Computable vs. Uncomputable Numbers. David Shugar. Microsoft Word. December, 2018 
§ Figure 10-13: Simplified Neural Network. David Shugar. Excel. October, 2018. 
§ Figure 10-14: Neural Network Learning and Back Propagation. David Shugar. Photo, Powerpoint. May, 2023. 
§ Figure 10-15: Cognitive Modeling of Environment. Powerpoint. May, 2023. 
§ Figure 10-16: Visual Illusions. David Shugar. Photoshop, Processing, Drawing. October, 2017. 
§ Figure 10-17: Integrated Information. David Shugar. Word. Drawing. May, 2023. 
 

 



 
Chapter 11– Sustainability  

 
§ Example 11.1: Renewable Energy. Standard License for Use Purchased. Stock photo ID: 1337173750.  
§ Example 11.2: Sustainable Reserves. David Shugar. Word. December, 2019.  
§ Example 11.3: Learning from Termites. David Shugar. Word and Photoshop. December, 2019.  
§ Example 11.4: Efficient Paths. David Shugar. Word. December, 2019.  
§ Example 11.5: Renewable Goals. David Shugar. Word. December, 2019.  
§ Example 11.6: Earthships. David Shugar. Word. March, 2020.  
§ Example 11.7: Network Design. David Shugar. Word. May, 2023.  
§ Example 11.8: Economic Systems. David Shugar. Word. March, 2020.  
§ Example 11.9: Small World Networks. David Shugar. Word. May, 2023.  
§ Figure 11-1: Equation for Sustainability. David Shugar. Word. February, 2019. 
§ Figure 11-2: Sustainability Reserves. David Shugar. Photoshop. October, 2018. 
§ Figure 11-3: Output vs. Sustainable Design. David Shugar. Powerpoint. October, 2018. 
§ Figure 11-4: Biomimicry Design Examples. Stock photo ID: 1478640537. 
https://www.istockphoto.com/photo/view-of-a-glimpse-of-a-park-in-milan-gm1478640537-506853874 
§ Figure 11-5: Sustainability and Ecosystem Design Principles. Word. October, 2018. 
§ Figure 11-6: Biophilic Design Tactics. Standard License for Use Purchased. Stock photo ID: 1478640537; Stock 
photo ID: 1176159063.; Stock photo ID: 1439236672.  
§ Figure 11-7: Improving Efficiency. Powerpoint. October, 2018. 
§ Figure 11-8: Global Renewable and Finite Energy Sources. Powerpoint. October, 2018. 
§ Figure 11-9: Sustainable Agricultural Management. Powerpoint. October, 2018. 
§ Figure 11-10: Sustainable Building Features. Powerpoint. October, 2018. 
§ Figure 11-11: Linear vs. Circular Economy. Powerpoint. October, 2018.  
§ Figure 11-12: Smart Grid Networks. Powerpoint. May, 2023.  
§ Figure 11-13: Multiple Types of Capital. Word. October, 2018. 
§ Figure 11-14: Sustainability Metrics. Word. November, 2019.  
§ Figure 11-15: Snowflake Model. Powerpoint. October, 2018. 
§ Figure 11-16: U.N. Sustainable Development Goals: Powerpoint. October, 2020. 
 

Chapter 12 – Transformation  
 
§ Example 12.1: Implementing an Idea. Standard License for Use Purchased. Stock photo ID: 1205158123.  
§ Example 12.3: Sensitivity Analysis. David Shugar. Word, February, 2020. 
§ Example 12.4: Balancing Feedback. David Shugar. Word, March, 2020. 
§ Figure 12-1: Equation for Transformation. David Shugar. Word, February, 2019. 
§ Figure 12-2: Transforming a System. David Shugar. Powerpoint, February, 2019. 
§ Figure 12-3: Systems Change Strategies. David Shugar. Powerpoint, May, 2023. 
§ Figure 12-4: Off-Grid House Functional Block Diagram. David Shugar. Powerpoint and Word. March, 2020. 
§ Figure 12-5: Data Flow Diagram. David Shugar. Powerpoint and Word. March, 2020. 
§ Figure 12-6: N2 Chart of Multiple Functions. David Shugar. Powerpoint and Word. March, 2020. 
§ Figure 12-7: Human-centered Design. David Shugar. Powerpoint, February, 2019. 
§ Figure 12-8: Organization Charts. David Shugar. Powerpoint, February, 2020. 
§ Figure 12-9: Enterprise Architecture Framework. David Shugar. Powerpoint, February, 2020. 
§ Figure 12-10: Complex Adaptive System. David Shugar. Powerpoint, February, 2020. 
§ Figure 12-11: Analysis and Decision Frameworks. David Shugar. Powerpoint, February, 2020. 
§ Figure 12-12: Casual Loop Diagram of Conventional Agriculture Sector. David Shugar. Powerpoint, February, 
2020. 
§ Figure 12-13 Intervening in Systems. David Shugar. Powerpoint, February, 2020. Heavily draws from Donella H. 
Meadows. 2008. Thinking in Systems: A Primer. Earthscan Publishing pg 194 https://wtf.tw/ref/meadows.pdf  
§ Figure 12-14: Changing Models of the World. David Shugar. Powerpoint, February, 2020. 
§ Figure 12-15: Testing Scientific Theories. David Shugar. Word, April, 2020. 
§ Figure 12-16: Evolution of Scientific Worldviews. David Shugar. Word, April, 2019. 
§ Figure 12-19: Systems Paradigm Transitions. David Shugar. Word, February, 2019. 



 

Citations 
 

1      Klir, G.. (1972). Trends in General Systems Theory. Wiley-Interscience. (pp. 26 )  
2      Mesarovic, M. D. (1964). Foundations for a general systems theory.  
3      Mobus, G. E., & Kalton, M. C. (2015). Principles of systems science (Vol. 519). New York: Springer. 
4      Bertalanffy, Ludwig. (1968). General System Theory. George Braziller Inc. (pp. 33)  
5      Turing, A. (1935). “On Computable Numbers, With an Application to the Entscheidungsproblem.”  
6      Henderson, Leah. (2022). "The Problem of Induction". The Stanford Encyclopedia of Philosophy. Accessed Dec 

2023: https://plato.stanford.edu/archives/win2022/entries/induction-problem/ 
7      Box, G. E. P. (1976). "Science and statistics." Journal of the American Statistical Association, 71: 791–799. 

DOI:10.1080/01621459.1976.10480949.  
8      Woronowicz, E. (1990). “Relations defined on sets.” Formalized Mathematics, 1(1), 181-186. 
9      Sierpiński, W. (1945). “Sur les fonctions de plusieurs variables.” Fundamenta Mathematicae, 33, 169-173. 
10    Dassow, J., & Truthe, B. (2004). “Formal Languages and Applications.” 
11    Carroll, J.; Long, D. (1989). Theory of finite automata with an introduction to formal languages. (pp. 30) 
12    Castellani, E. (2003). “Symmetry and equivalence.” Symmetries in physics: Philosophical reflections, (pp. 427). 
13   Apostol, T. M. (1967). "The Field Axioms." I 3.2 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an 

Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 17-19. 
14    Zhang, P., & Chartrand, G. (2006). Introduction to graph theory. Tata McGraw-Hill. 
15   Willems, J. C. (2007). “”The behavioral approach to open and interconnected systems. IEEE control systems 

magazine, 27(6), 46-99. 
16    Garciadiego, A. F. (2004). “The set-theoretic paradoxes.” Companion Encyclopedia of the History and Philosophy 

of the Mathematical Sciences: Volume One. 
17    Lin Y. (1986). “A Model of General Systems” Math/Modelling, Vol. 9, No. 2. pp. 95-104. 
18    Burge, Tyler. (1984). “Frege on Extensions of Concepts, from 1884 to 1903.” The Philosophical Review, Vol. 93, 

No. 1 Duke University 
19    Yin, Juan; Cao, Yuan; Yong, Hai-Lin; Et al. (2013). "Bounding the speed of 'spooky action at a distance". Physical 

Review Letters. 110 (26): 260407. DOI:10.1103/PhysRevLett.110.260407. 
20    Chang, J. (2020). “An Introduction to Category Theory and the Yoneda Lemma”. University of Chicago. Accessed 

Dec 2023: https://math.uchicago.edu/~may/REU2020/REUPapers/Chang,Justin.pdf; [ “=” references congruence] 
21    Hodges, Wilfrid. (2022). "Tarski’s Truth Definitions." The Stanford Encyclopedia of Philosophy. Accessed Dec, 

2023: https://plato.stanford.edu/archives/win2022/entries/tarski-truth/  
22    Tarski, A. (1933). “Pojęcie Prawdy w Językach Nauk Dedukcyjnych (in Polish).” Nakładem Towarzystwa 

Naukowego Warszawskiego. 
23    Raatikainen, Panu. (2018). "Gödel's Incompleteness Theorems." The Stanford Encyclopedia of Philosophy. 

Accessed Dec, 2023: https://plato.stanford.edu/archives/fall2018/entries/goedel-incompleteness.  
24    Cohen, Paul J. (1963). "The independence of the Continuum Hypothesis, [part I]". Proceedings of the National 

Academy of Sciences of the United States of America. 50 (6): 1143–1148. DOI: 10.1073/pnas.50.6.1143 
25    Carnot, S. (1824). “Reflections on the motive power of fire, and on machines fitted to develop that power.” Paris: 

Bachelier, 108(1824) 
26    Pimentel JA, Aldana M, Huepe C, Larralde H. (2008). “Intrinsic and extrinsic noise effects on phase transitions of 

network models with applications to swarming systems.” Phys. Rev. E 77, 061138. 
DOI:10.1103/PhysRevE.77.061138 

27    Brian A. (1999). “Complexity and the Economy.” Science 284: DOI:10.1126/science.284.5411.107 
28    Carroll, Sean. (2021). “The Biggest Ideas in the Universe | 21. Emergence”. Youtube. Accessed Dec, 2023: 

https://www.youtube.com/watch?v=0_PdLja-eGQ&ab_channel=SeanCarroll 
29    Carroll, Sean M (1997). "Lecture Notes on General Relativity". arXiv:gr-qc/9712019. 
30    Kövesdi, A., & Patócs, A. (2019). “Brief Description of Inheritance Patterns.” Genetics of Endocrine Diseases and 

Syndromes, 21-27. 
31     Dirac, P.A.M. (1933). "The Lagrangian in quantum mechanics" Physikalische Zeitschrift der Sowjetunion. 3: 64– 

72.; Baird, E. (2023). General relativity vs. quantum mechanics. General relativity. 



 

 

 
32   Adam, E. M. (2017). “Systems, generativity and interactional effects”. (Doctoral dissertation, Massachusetts 

Institute of Technology) 
33    Carroll, Sean. (2021). “The Biggest Ideas in the Universe | 21. Emergence”. Youtube. Accessed Dec, 2023: 

https://www.youtube.com/watch?v=0_PdLja-eGQ&ab_channel=SeanCarroll 
34    Healy, John. (2019). “QFT – How many fields are there?”. Physics Say What. Accessed Dec, 2023: 

https://www.physicssayswhat.com/2019/06/05/qft-how-many-fields-are-there/ 
35     Li, J. J., Guerra, S. P., Basu, K., & Silva, G. A. (2023). “A Categorical Framework for Quantifying Emergent Effects 

in Network Topology.” arXiv preprint arXiv:2311.17403.  
36    Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). “Emergent abilities of 

large language models.” arXiv preprint arXiv:2206.07682. 
37    Weisstein, Eric W. "Elementary Cellular Automaton." From MathWorld--A Wolfram Web Resource. Accessed 

Dec, 2023: http://mathworld.wolfram.com/ElementaryCellularAutomaton.html  
38    Wolfram, S. (1984). “Universality and complexity in cellular automata.” Physica D: Nonlinear Phenomena, 10 
39    Ninagawa, S. (2015). “Dynamics of universal computation and 1/f noise in elementary cellular automata.” Chaos, 

Solitons & Fractals, 70, 42-48. 
40    Gardner, Martin. (1970). "Mathematical Games – The fantastic combinations of John Conway's new solitaire 

game "life." Scientific American. 223: 120–123. ISBN 0-89454-001-7 
41    Chuang, Han-Yu et al. (2010). “A decade of systems biology” Annual review of cell and developmental 

biology vol. 26: 721-44. DOI: 10.1146/annurev-cellbio-100109-104122  
42    Taylor, A. G., Goehler, L. E., Galper, D. I., Innes, K. E., & Bourguignon, C. (2010). “Top-down and bottom-up 

mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research.” 
Explore (New York, N.Y.), 6(1), 29–41. https://doi.org/10.1016/j.explore.2009.10.004 

43    Clark, J.D.; de Heinzelin, J.; Schick, K.D.; et al. (1994). "African Homo erectus: old radiometric ages and young 
Oldowan assemblages in the Middle Awash Valley, Ethiopia." Science 264 (5167): 1907–1910. 
DOI:10.1126/science.8009220. 

44    J. A. J. Gowlett. (2016). The discovery of fire by humans: a long and convoluted process.” Philosophical 
Transaction of the Royal Society.  DOI: 10.1098/rstb.2015.0164  

45    McHenry, H.M. (2009). "Human Evolution." Evolution: The First Four Billion Years. The Belknap Press of 
Harvard University Press. pp. 265.; Nowell, April. (2010). “Defining Behavioral Modernity in the Context of 
Neandertal and Anatomically Modern Human Populations.” Annual Review of Anthropology Vol. 39: 437-452. 
DOI: 10.1146/annurev.anthro.012809.105113 

46    Pagel, M. (2017). “Q&A: What is human language, when did it evolve and why should we care?” BMC Biol 15, 
64. https://DOI.org/10.1186/s12915-017-0405-3 

47    Brian MacWhinney. (2005). “Language Evolution and Human Development.” Origins of the Social Mind: 
Evolutionary Psychology and Child Development. New York: Guilford Press. pp 383-410. 

48    McKie, Robin. (2011). “Did Stone Age cavemen talk to each other in symbols?” The Guardian. Accessed Dec, 
2023: https://www.theguardian.com/science/2012/mar/11/cave-painting-symbols-language-evolution  

49    Zygmont, Bryan. (2015). "Venus of Willendorf." Smarthistory. Accessed Dec 2023: 
https://smarthistory.org/venus-of-willendorf/. 

50    Curry, Andrew. (2008). "Gobekli Tepe: The World's First Temple?". Smithsonian.com. Accessed Aug, 2023: 
https://www.smithsonianmag.com/history/gobekli-tepe-the-worlds-first-temple-83613665/  

51    Dietrich, Oliver. (2011). “Radiocarbon dating the first temples of mankind. Comments on 14C-Dates from 
Göbekli Tepe.“ Zeitschrift für Orient-Archäologie. 4. 12-25.  

52    History.com Editors. (2018). “Neolithic Revolution.” History. Accessed Dec 2023: 
https://www.history.com/topics/pre-history/neolithic-revolution  

53    Zimmer, Carl. (2015). “Agriculture Linked to DNA Changes in Ancient Europe.” New York Times. Accessed Dec 
2023. https://www.nytimes.com/2015/11/24/science/agriculture-linked-to-dna-changes-in-ancient-europe.html  

54    Muroi, Kazuo. (2016). “The oldest example of π=3+1/8 in Sumer: Calculation of the area of a circular plot.” 
Cornell University Library.  https://arxiv.org/abs/1610.03380 

55    Howell, Elizabeth. “Stonehenge's summer solstice orientation is seen in monuments all over the UK in amazing 
photos”. Space.com. Accessed Dec 2023. https://www.space.com/stonehenge-summer-solstice-sun-monuments-
uk-amazing-photos  

56    Andrews, Mark. “Egypt: Thoth Hill on the West Bank at Luxorz”. Tour Egypt. Accessed Dec 2023: 
http://www.touregypt.net/featurestories/thothhill.htm#ixzz3Q5XOqvLp  

57    Sutherland, A. (2017). “Ouroboros: Ancient Infinity Symbol Used By Different Ancient Civilization.” Ancient 
Pages. http://www.ancientpages.com/2017/10/03/ouroboros-ancient-infinity-symbol-used-by-different-ancient-
civilizations/  



 
 

58    Beer, R.. (2003). The Handbook of Tibetan Buddhist Symbols. Serindia Publications. ISBN 1-59030-100-5.  p. 11. 
59    Liya, Sally. (2004). “The Use of Trees as Symbols in the World Religions”. Solas, 4. pp. 41-58. Donegal, Ireland. 

Association for Baha'i Studies English-Speaking Europe.  
60    Allman, George. (1889). Greek Geometry from Thales to Euclid. Hodges, Figgis, and Co. p. 26.  
61    Kavoussi B. (2007). “Chinese medicine: a cognitive and epistemological review*.” Evid Based Complement 

Alternat Med. 2007 Sep;4(3):293-8. DOI: 10.1093/ecam/nem005. PMID: 17965759 
62    Karl Jaspers. (1953). Origin and Goal of History. Routledgep. pp 2.  
63    Amir D. Aczel. (2000). “The Mystery Of The Aleph: Mathematics, the Kabbalah, and the Search for Infinity.” 

Washington Post. Accessed Dec, 2023.  http://www.washingtonpost.com/wp-
srv/style/longterm/books/chap1/mysteryaleph.htm?noredirect=on  

64    Kotrč, R. F. (1981). “The Dodecahedron in Plato’s Timaeus”. Rheinisches Museum Für Philologie. 124(3/4) 
65    Duignan, Brian. (2023) “Syllogistic.” Encyclopedia Britannica.  Accessed Dec, 2023: 

https://www.britannica.com/topic/syllogistic  
66    Andrews, Evan. “10 Innovations That Built Ancient Rome.” History. Accessed Dec, 2023: 

https://www.history.com/news/10-innovations-that-built-ancient-rome  
67    Berggren, J. Lennart. (2007). The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. 

Princeton University Press. ISBN 978-0-691-11485-9. pp. 518. 
68    Sasser, John. (2007). “The Islamic Connection: Contribution Made by the Arabs to Mathematics. PMU University. 

https://www.pmu.edu.sa/Attachments/Life_PMU/pdf/Dr.John_Sasser_Book.pdf; Brown, Ralph. 2016. “Tracing 
the Impact of Latin Translations of Arabic Texts on European Society.” Genealogies of Knowledge. 
http://genealogiesofknowledge.net/2016/11/22/tracing-impact-latin-translations-arabic-texts-european-society/; 
Accessed Dec, 2023   

69     Jamal, Madiha. (2021). “Mathematics In Art — Vitruvian Man By Leonardo Da Vinci.” Medium. Accessed Dec, 
2023. https://medium.com/counterarts/mathematics-in-art-vitruvian-man-by-leonardo-da-vinci-edae2989f162 

70     Rufus, W.V. (1942). “The Motion of the Heavenly Bodies: its International Significance.” Popular Astronomy, 
Vol. 50, pp.128.  

71    Smith, George. (2008). "Newton's Philosophiae Naturalis Principia Mathematica." The Stanford Encyclopedia of 
Philosophy. Accessed Dec, 2023: https://plato.stanford.edu/archives/win2008/entries/newton-principia/ 

72    Truscott, F.W. and Emory, F.L. (1951). “Laplace, Pierre Simon, A Philosophical Essay on Probabilities, translated 
into English from the original French” Dover Publications. New York.  

73    Morse, Anne. (2023). “World Population Estimated at 8 Billion”. United States Census. Accessed Dec, 2023. 
https://www.census.gov/library/stories/2023/11/world-population-estimated-eight-billion.html 

74    United Nations. (2022). “World Population Prospects 2022.” Accessed Dec, 2023. 
https://population.un.org/wpp/Graphs/DemographicProfiles/  

75    “Living Planet Report (2022)”. Global Footprint Network. Accessed Dec, 2023.  
https://www.footprintnetwork.org/living-planet-report/ 

76    Ritchie, Hannah; Roser, Max; Rosado, Pablo. (2023). "CO₂ and Greenhouse Gas Emissions". 
OurWorldInData.org. Accessed Dec, 2023. https://ourworldindata.org/co2-emissions 

77    Lüthi, D., Le Floch, M., Bereiter, B. et al. (2008). “High-resolution carbon dioxide concentration record 650,000–
800,000 years before present.” Nature 453, 379–382. DOI:10.1038/nature06949 

78    Kirkham, John. (1914). Structural Engineering. McGraw-Hill. pp 33.  
79    Weisstein, Eric W. "Gradient." From MathWorld--A Wolfram Web Resource. Accessed Dec, 2023.  

http://mathworld.wolfram.com/Gradient.html.  
80    Griffiths, David J. (1999). Introduction to Electrodynamics: Third Edition . New Jersey, USA. Pearson Education. 

pp. 14, pp 17, pp 19 
81    Griffiths, David J. (1999). Introduction to Electrodynamics: Third Edition . New Jersey, USA. Pearson Education. 

pp. 232 
82    Rehmann, Ulf. (2020). “Laplace equation”. Encyclopedia of Mathematics. Accessed Dec, 2023. 

http://encyclopediaofmath.org/index.php?title=Laplace_equation&oldid=47578 
83    Stewart, I. 1984. “Mathematics: Soap bubbles and catastrophes.” Nature 309, 581. DOI: 10.1038/309581a0 
84    Ida, Nathan. (2015). Engineering Electromagnetics. Springer pg 233  
85    Kauffmann, G., & van den Bosch, F. (2002). “Life Cycle.” Scientific American, 286(6), 36-45. 
86    Ginovart L., Sergio Coll-Pla J., Et. al (2017). ”Hooke’s chain theory and the construction of catenary arches in 

Spain.” International Journal of Architectural Heritage 11, no. 5. pp. 703-716. 
87    Ingber DE. Tensegrity I. (2003). “Cell structure and hierarchical systems biology.” J Cell Sci. 116(Pt 7):1157-73. 

DOI: 10.1242/jcs.00359. PMID: 12615960. 
88    Hanc, Jozef; Tuleja, Slavomir; Hancova, Martina. (2003). “Simple derivation of Newtonian mechanics from the 

principle of least action.” American Journal of Physics, Vol. 71, No. 4, pp. 386–391 



 

 

 
89    García-Morales, Vladimir; Pellicer, Julio; Manzanares, José A. (2008). "Thermodynamics based on the principle 

of least abbreviated action: Entropy production in a network of coupled oscillators". Annals of Physics. 323 (8).  
DOI:10.1016/j.aop.2008.04.007 

90    Woithe, Julia, Gerfried J. Wiener, and Frederik F. Van der Veken. 2017. "Let’s have a coffee with the standard 
model of particle physics!." Physics Education 52, no. 3. DOI 10.1088/1361-6552/aa5b25 

91    Byers, Nina. (1998). "E. Noether's discovery of the deep connection between symmetries and conservation laws." 
ArXiv preprint physics. DOI: 10.48550/arXiv.physics/9807044 

92    Feynman, R. P. (2005). “The principle of least action in quantum mechanics.” In Feynman's thesis—a new 
approach to quantum theory (pp. 1-69); “Schrodinger Equation”. Hyperphysics – GSU. Accessed Dec 2023: 
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/schr.html  

93    Michelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous 
Ether". American Journal of Science. 34 (203): 333–345. DOI:10.2475/ajs.s3-34.203.333. 

94    Leo Sartori. (1996). Understanding Relativity: a simplified approach to Einstein's theories. University of 
California Press. ISBN 0-520-20029-2. pp 9 

95    Hyperphysics. (2016). “Conservation Laws.”Georgia State University. Accessed Dec, 2023.   
http://hyperphysics.phy-astr.gsu.edu/hbase/conser.html#cons 

96    Rice, James. (2009). “Continuum Mechanics Fundamentals”. Harvard -  notes for ES 220. Accessed Dec, 2023: 
https://scholar.harvard.edu/files/jiaweiyang/files/continuummechanicsfundamentals.pdf 

97    Hoppensteadt, F. (2006). "Predator-prey model". Scholarpedia, 1(10):1563. Accessed Dec, 2023.   
http://www.scholarpedia.org/article/Predator-prey_model  

98    Helmenstine, Anne Marie. (2018). “What is Diffusion in Chemistry.” ThoughtCo. Accessed Dec, 2023.   
https://www.thoughtco.com/definition-of-diffusion-604430  

99    Mostinsky, I.L. (2011). “Diffusion Coefficient.” Thermopedia. DOI: 10.1615/AtoZ.d.diffusion_coefficient/ 
100  Beltrami, Edward J. (1998). "Chapter 1, Simple Dynamic Models". Mathematics for Dynamic Modeling (2nd ed.). 

San Diego, CA: Academic Press. pp. 3–7. ISBN 9780120855667. 
101  Hyperphysics. (2016). “Longitudinal Waves”. Georgia State University. Accessed Dec, 2023.      

http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/tralon.html#c2  
102  Anderson, Ross. “Derivation of Solar Position Formulae”. (2020). DOI: 10.48550/arXiv.2009.07094 
103  Jenny, Hans. (2001). Cymatics: A Study of Wave Phenomena and Vibration (3rd ed.). Macromedia Press. ISBN 

978-1-888138-07-8. 
104  Trinh, E. & Holt, Glynn & Thiessen, David. (1996). “The Dynamics of Ultrasonically Levitated Drops in an 

Electric Field.” Physics of Fluids. 8. DOI: 10.1063/1.868813. 
105   A. F. Heavens, A. N. Taylor. (19950. “A spherical harmonic analysis of redshift space.” Monthly Notices of the 

Royal Astronomical Society, Vol. 275, Issue 2.  DOI: 10.1093/mnras/275.2.483 
106   Britannica, T. Editors of Encyclopaedia. “Speed of Light”. (2023). Encyclopaedia Britannica. Accessed Dec, 

2023. https://www.britannica.com/science/speed-of-light 
107   Britannica, T. Editors of Encyclopaedia. “Geometric Optics: Light As Rays”. Encyclopaedia Britannica. 

Accessed Dec, 2023. https://www.britannica.com/science/light/Total-internal-reflection  
108   Popp, Fritz-Albert. (2003) "Properties of biophotons and their theoretical implications." IJEB Vol.41(05). ISSN: 

0975-1009 (Online); 0019-5189 (Print) 
109   Britannica, T. Editors of Encyclopaedia. (2023). "photoelectric effect." Encyclopedia Britannica. Accessed Dec, 

2023. https://www.britannica.com/science/photoelectric-effect. 
110   Ginsberg, D. M. (2023). "superconductivity." Encyclopedia Britannica. Accessed Dec, 2023.  

https://www.britannica.com/science/superconductivity.  
111   Kapitza, P. (1938). “Viscosity of Liquid Helium below the λ-Point.” Nature 141, 74  
112   Pethick, C.J.; Schaefer, Thomas. (2015). “Bose-Einstein condensates in neutron stars.” arXiv preprint 

arXiv:1507.05839 
113   Noor, Saima, Ma’mon Abu Hammad, Et. al. (2023). "Numerical Investigation of Fractional-Order Fornberg–

Whitham Equations in the Framework of Aboodh Transformation" Symmetry 15, no. 7: 1353. DOI: 
10.3390/sym15071353 

114  Metz, H. C., Manceau, M., & Hoekstra, H. E. (2011). “Turing patterns: how the fish got its spots.” Pigment Cell & 
Melanoma Research, 24(1), 12-14. 

115  Bahng, J. & Schwarzschild, M. (1961). "Lifetime of Solar Granules". The Astrophysical Journal. 134: 312 
DOI:10.1086/147160 

116  Ussery, D. W. (2002). “DNA Structure: A-, B-and Z-DNA Helix Families.” Encyclopedia of life sciences, 1, 
e003122. 

117   Chang, Hai-Chau; Wang, Lih-Chung (2010). "A Simple Proof of Thue's Theorem on Circle Packing". arXiv 
preprint arXiv:1009.4322 



 
 

118  Penrose, R. (1979). “Pentaplexity A Class of Non-Periodic Tilings of the Plane.” The Mathematical Intelligencer 
2, 32–37 (DOI: 10.1007/BF03024384 

119  Matthew Pennybacker and Alan C. Newell. (2018). “Phyllotaxis, Pushed Pattern-Forming Fronts and Optimal 
Packing.” arXiv preprint arXiv: 1301.4190 

120  Shugar, David. “Metatron's Dance”. Youtube. Accessed Dec, 2023: 
https://www.youtube.com/watch?v=TfJl_pryIuY&ab_channel=DavidShugar  

121   Paternot, Goedele, et al. (2014) "The spatial arrangement of blastomeres at the 4-cell stage and IVF outcome." 
Reproductive Biomedicine Online 28.2 198-203. DOI: 10.1016/j.rbmo.2013.10.008 

122   Louten J. (2016). “Virus Structure and Classification.” Essential Human Virology, 19–29. DOI: 10.1016/B978-0-
12-800947-5.00002-8 

123   Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang (2017). "A Formal Proof of the Kepler Conjecture". Forum 
of Mathematics, Pi. 5: e2. DOI:10.1017/fmp.2017.1.  

124   Pfeller, Wolfgang, (2007). Alloy Physics: A Comprehensive Reference. John Wiley and Sons.  pp 40.  
125   Massa, Werner. (2004). “Chapter 2 – Crystal Lattices.” Crystal Structure and Determination. Springer. 
126   “Structures of Metals.” University of Washington. Accessed Dec, 2023: 

https://depts.washington.edu/matseed/mse_resources/Webpage/Metals/metalstructure.htm 
127  (2011) “Press Release: A remarkable mosaic of atoms.”  Nobel Prize. Accessed Dec, 2023: 

https://www.nobelprize.org/prizes/chemistry/2011/press-release/ 
128  Pfeller, W. (2007). Alloy Physics: A Comprehensive Reference. John Wiley and Sons.  pp 55-60.  
129  Caspar, D. L. D., and Fontano, E. (1996). “Five-fold symmetry in crystalline quasicrystal lattices.”  Proceedings of 

the National Academy of Sciences of the United States of America, 93(25), 14271–14278. DOI: 
10.1073/pnas.93.25.14271 

130  Kroto, H., Heath, J., O’Brien, S. et al. (1985). “C60: Buckminsterfullerene.” Nature 318, 162-163 DOI: 
10.1038/318162a0 

131  Luminet, J.-P. et al. (2003) “Dodecahedral space topology as an explanation for weak wide-angle temperature in 
the cosmic microwave background.” Nature, 425, 593-595, DOI: 10.1038/nature01944 

132  Krumins, A. V. (1999). “Symmetry, conservation laws, and theoretical particle physics”. 1918-1979 (Doctoral 
dissertation). 

133  Weisstein, Eric W. "Sierpiński Sieve." From MathWorld--A Wolfram Web Resource. Accessed Dec, 
2023: http://mathworld.wolfram.com/SierpinskiSieve.html 

134  Levine, Dov; Steinhardt, Paul (1984). "Quasicrystals: A New Class of Ordered Structures". Physical Review 
Letters. 53 (26): 2477–2480. DOI:10.1103/PhysRevLett.53.2477 

135  Weisstein, Eric W. "Koch Snowflake." From MathWorld--A Wolfram Web Resource. Accessed Dec, 2023: 
http://mathworld.wolfram.com/KochSnowflake.html 

136  Weisstein, Eric W. "Coastline Paradox." From MathWorld--A Wolfram Web Resource. Accessed Dec, 2023: 
http://mathworld.wolfram.com/CoastlineParadox.html  

137  Gabriele A. Losa, Danilo Merlini, Theo F. Nonnenmacher, Ewald R. Weibe. (2002). Fractals in Biology and 
Medicine.  Birkhäuser Basel pp 10. DOI: 10.1007/978-3-0348-8119-7 

138  Wang, X., Becker, F. F. (2010). “The fractal dimension of cell membrane correlates with its capacitance: A new 
fractal single-shell model.” Chaos, 20(4), 043133. DOI: 10.1063/1.3526972 

139  Cohen, Irun; Harel, David. (2007) “Explaining a complex living system: dynamics, multi-scaling and emergence”. 
J. R. Soc. Interface DOI:10.1098/rsif.2006.0173 

140  Zamir, M. (2001). “Arterial Branching within the Confines of Fractal L-System Formalism.” The Journal of 
General Physiology, 118(3), 267–276. DOI: 10.1085/jgp.118.3.267 

141  West, G. B., Brown, J. H., & Enquist, B. J. (1999). “The Fourth Dimension of Life: Fractal Geometry and 
Allometric Scaling of Organisms.” Science, 284(5420). DOI: 10.1126/science.284.5420.1677 

142  Kumari, K. M. (2016). “Expression of Fibonacci sequences in plants and animals.” Bulletin of Mathematics and 
Statistics Research, 1, 27-35. 

143  Dharam Persaud-Sharma and James P O’Leary (2015). “Fibonacci Series, Golden Proportions, and the Human 
Biology.” HWCOM Faculty Publications 

144  “The Most Irrational Number”. American Mathematical Society. Accessed Dec, 2023: 
https://www.ams.org/publicoutreach/feature-column/fcarc-irrational4 

145  Wang, N., Ma, J., Jin, D., & Yu, B. (2017).  “A Special Golden Curve in Human Upper Limbs' Length 
Proportion: A Functional Partition Which Is Different from Anatomy.” BioMed research international, 
4158561. DOI:10.1155/2017/4158561 

146  Dharam Persaud-Sharma and James P O’Leary (2015). “Fibonacci Series, Golden Proportions, and the Human 
Biology.” HWCOM Faculty Publications 



 

 

 
147  Losert, W., Shi, B. Q., & Cummins, H. Z. (1998). “Evolution of dendritic patterns during alloy solidification: onset 

of the initial instability.” Proceedings of the National Academy of Sciences of the United States of America, 95(2), 
431–438. DOI: 10.1073/pnas.95.2.431 

148  Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H., & Sawada, Y. (1984). “Fractal structures of zinc metal leaves 
grown by electrodeposition.” Physical review letters, 53(3), 286. 

149  Hallet, B. (1990). “Spatial self-organization in geomorphology: from periodic bedforms and patterned ground to 
scale-invariant topography.” Earth-Science Reviews, 29(1-4), 57-75. 

150  Azevedo, Frederico A.C.; Carvalho, Ludmila R.B.; Grinberg, Lea T.; Farfel, José Marcelo; Ferretti, Renata E.L.; 
Leite, Renata E.P.; Filho, Wilson Jacob; Lent, Roberto; Herculano-Houzel, Suzana (2009). "Equal numbers of 
neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain". The Journal of 
Comparative Neurology. 513 (5): 532–541. 

151  Werner, G. (2010). “Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience.” 
Frontiers in Physiology, 1, 15. DOI.org/10.3389/fphys.2010.00015 

152  Agnati, L. F., Baluska, F., Barlow, P. W., & Guidolin, D. (2009). “Mosaic, self-similarity logic, and biological 
attraction principles: three explanatory instruments in biology.” Communicative & integrative biology, 2(6), 552–
563. DOI:10.4161/cib.2.6.9644;  

153  Khaluf Yara, Ferrante Eliseo, Simoens Pieter and Huepe Cristián (2017). “Scale invariance in natural and artificial 
collective systems: a review” J. R. Soc. Interface.14 DOI: 10.1098/rsif.2017.0662 

154  Kärger, J. (2002). “The random walk of understanding diffusion.” Industrial & engineering chemistry research, 
41(14), 3335-3340. DOI: 10.1021/ie020214k 

155  Gaite, J. (2010). “Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe.” Journal 
of Cosmology and Astroparticle Physics, DOI 10.1088/1475-7516/2010/03/006 

156  Kobayashi, N., Yamazaki, Y., Kuninaka, H., Katori, M., Matsushita, M., Matsushita, S., & Chiang, L. Y. (2011). 
“Fractal structure of isothermal lines and loops on the cosmic microwave background.” Journal of the physical 
society of japan, 80(7), 074003. DOI: 10.1143/JPSJ.80.074003 

157  Poincaré, H. (1893). “Les méthodes nouvelles de la mécanique céleste (Vol. 2).” Gauthier-Villars et fils, 
imprimeurs-libraires. 

158  Zhang, F., Sun, Y. Q., Magnusson, L., Buizza, R., Lin, S., Chen, J., & Emanuel, K. (2019). “What Is the 
Predictability Limit of Midlatitude Weather?” Journal of the Atmospheric Sciences, 76(4), 1077-1091. DOI: 
10.1175/JAS-D-18-0269.1 

159  Piantadosi ST. (2014) “Zipf's word frequency law in natural language: a critical review and future 
directions.” Psychon Bull Rev. 2014 Oct;21(5):1112-30. DOI: 10.3758/s13423-014-0585-6.  

160  Banavar, J. R., Moses, M. E., Brown, J. H., Damuth, J., Rinaldo, A., Sibly, R. M., & Maritan, A. (2010). “A 
general basis for quarter-power scaling in animals.” Proceedings of the National Academy of Sciences, 107(36) 

161  Sharma, V. (2009). “Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: 
Perspectives on a New Frontier.” The Open Cardiovascular Medicine Journal, 3, 110–123. DOI: 
10.2174/1874192400903010110; Pittman-Polletta, B. R., Scheer, F. A. J. L., Butler, M. P., Shea, S. A., and Hu, K. 
(2013). “The role of the circadian system in fractal neurophysiological control.” Biological Reviews of the 
Cambridge Philosophical Society, 88(4). DOI: 10.1111/brv.12032; West, B. J. (2010). “Fractal Physiology and the 
Fractional Calculus: A Perspective.” Frontiers in Physiology, 1, 12. DOI: 10.3389/fphys.2010.00012; Little, M. 
A., McSharry, P. E., Roberts, S. J., Costello, D. A., and Moroz, I. M. (2007). “Exploiting Nonlinear Recurrence 
and Fractal Scaling Properties for Voice Disorder Detection.” BioMedical Engineering OnLine, 6, 23.  

162  Pablo A. Marquet, Renato A. Quiñones, Et. al. (2005). “Scaling and power-laws in ecological systems.” J 
Exp Biol 1 May 2005; 208 (9): 1749–1769. DOI: 10.1242/jeb.01588; Cohen, J. E., Rodríguez-Planes, L. I., 
Gaspe, Et. al. (2017). “Chagas disease vector control and Taylor's law.” PLoS neglected tropical diseases, 
11(11), e0006092. DOI: 10.1371/journal.pntd.0006092 

163  Bruce, A., & Wallace, D. (1989). “Critical point phenomena: universal physics at large length scales.” The new 
physics, 236-267. 

164  Frette, V., Christensen, K., Malthe-Sørenssen, A., Feder, J., Jøssang, T., & Meakin, P. (1996). “Avalanche 
dynamics in a pile of rice.” Nature, 379(6560), 49-52. 

165  Beggs JM, Plenz D. (2003) “Neuronal avalanches in neocortical circuits.” J Neurosci. 2003 Dec 
3;23(35):11167-77. DOI: 10.1523/JNEUROSCI.23-35-11167.2003.  

166  Barabási, Albert-László; Albert, Réka. (1999). "Emergence of scaling in random networks". Science. 286 (5439): 
509 -512.  DOI:10.1126/science.286.5439.509  

167  Haruna, T., & Gunji, Y. P. (2019). “Ordinal preferential attachment: a self-organizing principle generating dense 
scale-free networks.” Scientific reports, 9(1), 4130. 

168  Bonora, M., Patergnani, S., Rimessi, A., De Marchi, E., Suski, J. M., Bononi, A., ... & Pinton, P. (2012). 
“ATP synthesis and storage.” Purinergic signalling, 8, 343-357. 



 
 

169  Bormashenko E. (2019). “The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or 
a Step to Great Unification?”. Entropy, 21(10), 918. DOI: 10.3390/e21100918 

170  Maturana, H. R.; Varela, F. J. (1991). Autopoiesis and Cognition: The Realization of the Living. Springer 
Science & Business Media. ISBN 978-90-277-1016-1. 

171  Miller, J. G. (1976). “The nature of living systems”. Behavioral Science, 21(5), 295-319. 
172  J. L. Chapman, M. J. Reiss. (1999). Ecology: Principles and Applications. Cambridge University Press. pp 142 
173  Margulis, L.. and Sagan, D. (1995). What Is Life? Berkeley: University of California Press. pp. 1 
174  Miller, Stanley L. (1953). "Production of Amino Acids Under Possible Primitive Earth Conditions." Science. 117 

(3046): 528–9. DOI: 10.1126/science.117.3046.528 
175  Deamer, D. (1999). "How Did It All Begin: The Self-assembly of Organic Molecules and the Origin of Cellular 

Life."  The Paleontological Society Special Publications, 9, 221-240. DOI : 1017/S2475262200014106 
176  Bryson, Steve., Et. al. (2010). “The Occurrence of Rocky Habitable Zone Planets Around Solar-Like Stars from 

Kepler Data.” Earth and Planetary Astrophysics, 161, 1. DOI: 10.3847/1538-3881/abc418   
177  Peter Alpert. (2005) “Sharing the Secrets of Life Without Water”. Integrative and Comparative Biology, Volume 

45, Issue 5, 683–684, DOI: 10.1093/icb/45.5.683 
178  G. Kekovića, D. Rakovićb, Et. al. (2010). “Quantum Foundations of Resonant Recognition Model.” Acta Physica 

Polonica A. Vol 117 No. 5. DOI:10.12693/APhysPolA.117.756 
179  Walker, A., Et. Al. (2015). “More than one way to spin a crystallite: multiple trajectories through liquid 

crystallinity to solid silk.” Proceedings of the Royal Society B: Biological Sciences, 282(1809), DOI: 
10.1098/rspb.2015.0259; Thompson, A. (2009). “How 'Jeweled' Beetles Get Their Shine.” Live Science. Accessed 
Dec, 2023: https://www.livescience.com/7812-jeweled-beetles-shine.html  

180  J.W. Goodby. (1998). “Liquid Crystal and Life.” Liquid Crystal, 24:1. DOI: 10.1080/026782998207550 
181  Gao, Y., Fang, H., Ni, K. et al. (2022). “Water clusters and density fluctuations in liquid water based on extended 

hierarchical clustering methods.” Sci Rep 12, 8036 DOI: 10.1038/s41598-022-11947-6 
182  Elton, D. C., Spencer, P. D., Riches, J. D., & Williams, E. D. (2020). “Exclusion Zone Phenomena in Water-A 

Critical Review of Experimental Findings and Theories.” International journal of molecular sciences, 21(14), 
5041. DOI: 3390/ijms21145041 

183  Benfey, P. N., and Mitchell-Olds, T. (2008). “From Genotype to Phenotype: Systems Biology Meets Natural 
Variation.” Science 320(5875), 495–497. DOI: 10.1126/science.1153716  

184  Isaeva, Valeria. (2012). “Self-Organization in Biological Systems.” Izvestiia Akademii nauk. Seriia 
biologicheskaia / Rossiĭskaia akademiia nauk. 39. 144-53. DOI: 10.1134/S1062359012020069.; Dobrescu, R., 
and Purcarea, V. (2011). “Emergence, self–organization and morphogenesis in biological structures.” Journal of 
Medicine and Life, 4(1), 82–90. PMID: 21505578 

185  Colin D. McCaig, Bing Song, Ann M. Rajnicek; (2009) “Electrical dimensions in cell science.” J Cell Sci 1 
December 2009; 122 (23): 4267–4276. DOI: 10.1242/jcs.023564; Levin M. (2009). “Bioelectric mechanisms in 
regeneration: Unique aspects and future perspectives.” Seminars in cell & developmental biology, 20(5), 543–556. 
DOI: 10.1016/j.semcdb.2009.04.013 

186  West, B.J. (1990). “Physiology in fractal dimensions: Error tolerance.” Ann Biomed Eng 18, 135–149  
187  Rampino, Michael. (2011). “Darwin's error? Patrick Matthew and the catastrophic nature of the geologic record.” 

Historical Biology. 23. 227-230. DOI: 10.1080/08912963.2010.523948. 
188  Lubbock, R. (1980). “Why are clownfishes not stung by sea anemones?.” Proceedings of the Royal Society of 

London. Series B. Biological Sciences, 207(1166), 35-61. 
189  Wright, J. S., Fu, R., Worden, J. R., Et. al. (2017). “Rainforest-initiated wet season onset over the southern Amazon.” 

Proceedings of the National Academy of Sciences, 114(32), 8481-8486. 
190  Wiener, N. (1948). Cybernetics: Or Control and Communication in the Animal and the Machine. Paris, (Hermann 

& Cie) & Camb. Mass. (MIT Press) ISBN 978-0-262-73009-9 
191  Eisenbach, Michael. (Dec 2011). “Bacterial Chemotaxis.” In: eLS. John Wiley and Sons Ltd, Chichester. 

DOI:10.1002/9780470015902.a0001251.pub3 
192  Westerhoff, H. V., Brooks, A. N., Simeonidis, E., García-Contreras, R., He, F., Boogerd, F. C., … Kolodkin, A. 

(2014). “Macromolecular networks and intelligence in microorganisms.” Frontiers in Microbiology, 5, 379. DOI: 
10.3389/fmicb.2014.00379  

193  Jacob, E.; Becker, I.; Shapira, Y.; Levine, H. (2004). “Bacterial linguistic communication and social intelligence.” 
Trends in Microbiology Vol.12 No.8 DOI: 10.1016/j.tim.2004.06.006 

194  Trewavas, A. (2017). “The foundations of plant intelligence.” Interface Focus, 7(3), DOI: 10.1098/rsfs.2016.0098  
195  Gorzelak, M. A., Asay, A. K., Pickles, B. J., and Simard, S. W. (2015). “Inter-plant communication through 

mycorrhizal networks mediates complex adaptive behaviour in plant communities.” AoB Plants, 7, plv050.  
196  Foerder, P., Galloway, M., Barthel, T., Moore, D. E., and Reiss, D. (2011). “Insightful Problem Solving in an 

Asian Elephant.” PLoS ONE, 6(8), DOI: 10.1371/journal.pone.0023251  



 

 

 
197  Shannon, C. E. (1948). “A mathematical theory of communication.” The Bell system technical journal, 27(3) 
198  Freire Junior, O., & Freire Junior, O. (2015). “Philosophy Enters the Optics Laboratory: Bell’s Theorem and Its 

First Experimental Tests (1965–1982). ”  The Quantum Dissidents: Rebuilding the Foundations of Quantum 
Mechanics (1950-1990), 235-286. DOI : 10.1016/j.shpsb.2005.12.003 

199  Roger Colbeck; Renato Renner (2011). "No extension of quantum theory can have improved predictive power". 
Nature Communications. 2 (8): 411. DOI: 10.1038/ncomms1416 

200  Julsgaard, B., Kozhekin, A. & Polzik, E. (2001). “Experimental long-lived entanglement of two macroscopic 
objects.” Nature 413, 400–403. DOI: 10.1038/35096524 

201  Roncaglia, M. (2019). “On the Conservation of Information in Quantum Physics.” Foundations of Physics, 49 
202  Hawking, S. W. (1974). Black hole explosions?. Nature, 248(5443), 30-31. DOI: 10.1038/248030a0 
203  Susskind, L. (2003). “The anthropic landscape of string theory.” arXiv preprint hep-th/0302219. 
204  Orus, Roman. (2014).“Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and 

Holography.” Eur. Phys. J. B (2014) 87: 280  DIO : 10.1140/epjb/e2014-50502-9   
205  Berkenstein, Jacob. (2007). “Information in the Holographic Universe.” Scientific American. Accessed Dec, 2023: 

https://www.scientificamerican.com/article/information-in-the-holographic-univ/ 
206  Afshordi, N., Corianò, C., Delle Rose, L., Gould, E., & Skenderis, K. (2017). "From Planck data to Planck era: 

observational tests of holographic cosmology. Physical Review Letters, 118(4), 041301. 
207  Shannon, C. E. (1938). “A symbolic analysis of relay and switching circuits.” Electrical Engineering, 57(12) 
208  Extance, A. (2016) “How DNA could store all the world’s data.” Nature 537, 22–24. DOI: 10.1038/537022a 
209  Drachman DA (2005). "Do we have brain to spare?" Neurology. 64 (12) 

DOI:10.1212/01.WNL.0000166914.38327.BB.  
210  Grunwald, P., & Vitányi, P. (2004). “Shannon information and Kolmogorov complexity.” arXiv  preprint 

cs/0410002. DOI: 10.48550/arXiv.cs/0410002 
211   Cutlip, K. (2020). “DNA may not be life's instruction book—just a jumbled list of ingredients”. Phys.Org. 

Accessed Dec, 2023: https://phys.org/news/2020-04-dna-life-bookjust-jumbled-ingredients.html 
212  Hoexum, E. (2020). “Revisiting the proof of the complexity of the sudoku puzzle”. (Doctoral dissertation) 
213  Parr, T., & Howard, J. (2018). “The matrix calculus you need for deep learning.” arXiv preprint:1802.01528. 
214  Witter, Menno P.; Moset, Edvard I. (2006). “Spatial representation and the architecture of the entorhinal cortex.” 

Trends in Neuroscience.  DOI: 10.1016/j.tins.2006.10.003  
215  IxDF. (2016). “What is Visual Perception?. Interaction Design Foundation - IxDF.” Accessed Dec, 2023:” 

https://www.interaction-design.org/literature/topics/visual-perception  
216  Gefter, A. (2016). “The Evolutionary Argument Against Reality.” Quanta Magazine. Accessed Dec, 2023: 

https://www.quantamagazine.org/the-evolutionary-argument-against-reality-20160421/  
217  Hawkins, J., & Ahmad, S. (2016). “Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory 

in Neocortex.” Frontiers in neural circuits, 10, 23. DOI: 10.3389/fncir.2016.00023 
218  Pribram, Karl. (1991). Brain and Perception: Holonomy and Structure in Figural Processing. Psychology Press.  
219  Takeuchi, T., Duszkiewicz, A. J., and Morris, R. G. M. (2014). “The synaptic plasticity and memory hypothesis: 

encoding, storage and persistence.” Philosophical Transactions of the Royal Society B: Biological Sciences, 369  
220  Tononi, Giulio; Boly, Melanie; Massimini, Marcello; Koch, Christof (2016). "Integrated information theory: From 

consciousness to its physical substrate". Nature Reviews Neuroscience. 17 (7): 450–461.  
221  Aftab, S.M.A., Razak, N.A., Et. al. (2016). “Mimicking the humpback whale: An aerodynamic perspective.” 

Progress in Aerospace Sciences 84: 48-69. DOI: 10.1016/j.paerosci.2016.03.002  
222  Gillis, K., & Gatersleben, B. (2015). “A review of psychological literature on the health and wellbeing benefits of 

biophilic design.” Buildings, 5(3), 948-963. DOI: 10.3390/buildings5030948 
223  Park, SH; Mattson, RH (2009). "Ornamental indoor plants in hospital rooms enhanced health outcomes of patients 

recovering from surgery". J Altern Complement Med. 15: 975–80. DOI:10.1089/acm.2009.0075.  
224  OECD. (2023). “Gross domestic product (GDP) (indicator).” DOI: 10.1787/dc2f7aec-en; OECD. (2023). 

“Primary energy supply (indicator).” DOI: 10.1787/1b33c15a-en (Accessed Dec, 2023) 
225   Obama B. (2017). “The irreversible momentum of clean energy.” Science 355(6321), 126–129. DOI: 

10.1126/science.aam6284 
226   Gnana, Kanaga. (2015). “Lazard’s Levelized Cost of Energy Analysis (“LCOE”) ver 8.”  
227   Lee, J. A., & Gill, T. E. (2015). “Multiple causes of wind erosion in the Dust Bowl.” Aeolian Research, 19, 15-36. 
228  Crews, T. E., Carton, W., & Olsson, L. (2018). “Is the future of agriculture perennial? Imperatives and 

opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures.” Global 
Sustainability, 1, e11. 

229  Hu, F. B., & Malik, V. S. (2010). “Sugar-sweetened beverages and risk of obesity and type 2 diabetes: 
epidemiologic evidence.” Physiology & behavior, 100(1), 47-54.. 



 
 

230  Hewlings, S. J., & Kalman, D. S. (2017). “Curcumin: A Review of Its Effects on Human Health.” Foods (Basel, 
Switzerland), 6(10), 92. DOI: 10.3390/foods6100092 

231  Moraga, G., Huysveld, S., Mathieux, F., Blengini, G. A., Alaerts, L., Van Acker, K., de Meester, S., & Dewulf, J. 
(2019). “Circular economy indicators: What do they measure?” Resources, conservation, and recycling, 146, 452–
461. DOI: 10.1016/j.resconrec.2019.03.045 

232  Harding, X. (2016). “Feed Your 3D Printer Recycled Plastic.” Popular Science. Accessed Dec, 2023: 
https://www.popsci.com/feed-your-3-d-printer-recycled-plastic/ 

233  Hussain, A., Bui, V. H., & Kim, H. M. (2019). “Microgrids as a resilience resource and strategies used by 
microgrids for enhancing resilience.” Applied energy, 240, 56-72. 

234  Bottinelli A, Et. al. (2015). “Local cost minimization in ant transport networks: from small-scale data to large-scale 
trade-offs.” J. R. Soc. Interface DOI: 10.1098/rsif.2015.0780 

235  A. Tero, S. Takagi, T. Saigusa, K. Ito, Et. al (2010). “Rules for Biologically Inspired Adaptive Network Design.” 
Science 327 (5964): 439 DOI: 10.1126/science.1177894 

236  Hardin, G. (1968). “The tragedy of the commons: the population problem has no technical solution; it requires a 
fundamental extension in morality.” Science, 162(3859), 1243-1248. 

237  Elliott, M.; Goyal S., Et. al.. (2019). “Networks and economic policy”. Oxford Review of Economic Policy, 
Volume 35, Issue 4, Pages 565–585, DOI: 10.1093/oxrep/grz024 

238  Stout, Lynn. (2012). “The Shareholder Value Myth.” Harvard Law School Forum. Accessed Dec, 2023: 
https://corpgov.law.harvard.edu/2012/06/26/the-shareholder-value-myth/ 

239  ILO. (2018). “Women and men in the informal economy: A statistical picture. Third edition”. Internation Labour 
Orgazniation: ILO. ISN: 9789221315803 

240  Schepelmann, P., Goossens, Y., & Makipaa, A. (2009). Towards sustainable development: Alternatives to GDP 
for measuring progress (No. 42). Wuppertal Spezial. 

241  “Sustainable Investing Overview”. (2022). US Sustainable Investment Forum.  Accessed Dec, 2023: 
https://www.ussif.org//Files/Trends/2022/Overview%20infographic.pdf 

242  “S&P 500 Fossil Fuel Free Index.” (2023). S&P Dow Jones Indices.  Accessed Dec, 2023: 
https://www.spglobal.com/spdji/en/indices/esg/sp-500-fossil-fuel-free-index/#overview 

243  Wood, A., Kleinbaum, A. M., & Wheatley, T. (2023). “Cultural diversity broadens social networks.” Journal of 
Personality and Social Psychology, 124(1), 109–122. DOI: 10.1037/pspi0000395 

244  Pall, David. (2015). “‘Snowflake’ Organizing, Used by Obama, Imported by Canadian Campaigners.” The Tyee. 
Accessed Dec, 2023: https://thetyee.ca/News/2015/11/11/Snowflake-Organizing/  

245  “Sustainable Development Goals.” United Nations. Accessed Dec, 2023: 
https://www.un.org/sustainabledevelopment/sustainable-development-goals/  

246  Macy, J., & Johnstone, C. (2009). “The great turning.” Song, 93. 
247  Stockman, B., Boyle, J., & Bacon, J. (2010). “International space station systems engineering case study.” 
248  Dam, R. F. (2023). “The 5 Stages in the Design Thinking Process.” Interaction Design Foundation - IxDF. 

Accessed Dec, 2023: https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process 
249  U.N. “Who are the current members of the United Nations?”. United Nations. Accessed Dec, 2023: 

https://www.un.org/about-us/member-states 
250  “Treasury Enterprise Architecture Framework” (2000). US Department of the Treasury Chief Information Officer 

Council. Accessed Dec, 2023: 
https://web.archive.org/web/20090318003653/http://www.eaframeworks.com/TEAF/teaf.doc 

251  Burnes, Bernard. (2005). "Complexity theories and organizational change". International Journal of Management 
Reviews. 7 (2): 73–90. DOI:10.1111/j.1468-2370.2005.00107.x. 

252  Australian Government. (2010). “The cane toad (Bufo marinus) - fact sheet.” Department of the Environment. 
Accessed Dec, 2023: https://www.environment.gov.au/biodiversity/invasive-species/publications/factsheet-cane-
toad-bufo-marinus  

253  Meadows, Donella H. (2008). Thinking in Systems: A Primer. Earthscan Publishing pp 194 
 
 
 

 
 

  



  T H E  

S C I E N C E
 

O F

S Y S T E M S
  A Unified View of Nature’s Patterns

 DAVID SHUGAR

TH
E SC

IEN
C

E O
F SYSTEM

S

The Science of Systems provides a unified approach to study 
all types of natural patterns and implores readers to embrace 
a worldview centered on connection and complexity. Complex 
systems challenge the view that nature can be understood as 
separate and predictable parts, which calls for new ways to 
model and interact with our interwoven world. 

This interdisciplinary work studies underlying principles in This interdisciplinary work studies underlying principles in 
logical systems and provides insights to phenomena observed 
in physical, informational, and biological systems. Patterns 
that are given particular attention include equilibrium, flux, 
symmetry, fractals, chaos, information, self-organization, and 
emergence. The book is adorned with hundreds of figures to 
vividly illustrate these patterns observed in nature. 

The book culminates in practical applications of how systems The book culminates in practical applications of how systems 
science can be used as a tool to address many contemporary 
challenges, spanning environmental to socioeconomic issues. 
As readers navigate the complex terrain of our 21st-century 
challenges, The Science of Systems empowers them with a 
systems thinking mindset, providing insights and methods to 
solve problems in our interconnected and complex world. 
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